|
【纪念当年的帖子(2010)】Add Maths功课讨论区
[复制链接]
|
|
发表于 16-2-2012 12:32 AM
|
显示全部楼层
get
-6q=p
4q^2=-9
square
puangenlun 发表于 15-2-2012 09:25 PM 
这个答案我喜欢。。。 |
|
|
|
|
|
|
|
发表于 16-2-2012 03:41 PM
|
显示全部楼层
本帖最后由 lin96 于 16-2-2012 04:04 PM 编辑
题目是不是抄错?
是+9还是-9?
Allmaths 发表于 15-2-2012 09:02 PM 
对不起!写错了,是+9...抱歉!
不过我还是不太明白...
-6q=p
4q^2=-9
p=+-9i
q=-+1.5i
是怎么得到p= +-9?
不过答案是对的 |
|
|
|
|
|
|
|
发表于 16-2-2012 03:46 PM
|
显示全部楼层
roots: q 2q
(x-q)(x-2q)=0
x^2-3qx+2q^2=0
2x^2-6qx+4q^2=0
compare with
2x^2+px+9=0
get
-6q=p
4q^2=9
p=+-9
q=-+1.5 |
|
|
|
|
|
|
|
发表于 16-2-2012 03:48 PM
|
显示全部楼层
这题我也不会
Given that the equation 5x^2 - 6x + k=0 has two equal roots. Find the values of k and the roots. |
|
|
|
|
|
|
|
发表于 16-2-2012 04:16 PM
|
显示全部楼层
这题我也不会
Given that the equation 5x^2 - 6x + k=0 has two equal roots. Find the values of k an ...
lin96 发表于 16-2-2012 03:48 PM 
用discriminant。。。
b^2-4ac=(-6)^2-4(5)(k)=0
36-20k=0
k=9/5 |
|
|
|
|
|
|
|
发表于 16-2-2012 04:24 PM
|
显示全部楼层
用discriminant。。。
b^2-4ac=(-6)^2-4(5)(k)=0
36-20k=0
k=9/5
Allmaths 发表于 16-2-2012 04:16 PM 
那root怎么找?答案是 k=1.8, x=0.6 |
|
|
|
|
|
|
|
发表于 16-2-2012 05:21 PM
|
显示全部楼层
那root怎么找?答案是 k=1.8, x=0.6
lin96 发表于 16-2-2012 04:24 PM 
substitute value of k回去equation。。
然后solve quadratic equation 就可以了 |
评分
-
查看全部评分
|
|
|
|
|
|
|
发表于 19-2-2012 03:47 PM
|
显示全部楼层
solving quadratic equation
----------------------------------
Given that x^2 +6x - 7= (x-p)(x+q)=0
find the values of p and q. |
|
|
|
|
|
|
|
发表于 19-2-2012 03:49 PM
|
显示全部楼层
k(x)=4-3x
m(x)= 6/x-1 x not equal to 1
functions k and m are given as shown. Find m^-1k(x) |
|
|
|
|
|
|
|
发表于 19-2-2012 05:10 PM
|
显示全部楼层
solving quadratic equation
----------------------------------
Given that x^2 +6x - 7= (x-p)(x+q) ...
lin96 发表于 19-2-2012 03:47 PM 
x^2 +6x - 7=(x+7)(x-1)
compare with (x-p)(x+q),
p=1, q=7 |
|
|
|
|
|
|
|
发表于 19-2-2012 05:12 PM
|
显示全部楼层
k(x)=4-3x
m(x)= 6/x-1 x not equal to 1
functions k and m are given as shown. Find m^ ...
lin96 发表于 19-2-2012 03:49 PM 
Let y=m^-1[k(x)]
then m(y)=k(x)
6/(y-1)=4-3x
y=[6/(4-3x)]+1
y=(10-3x)/(4-3x)
m^-1[k(x)]=(10-3x)/(4-3x) |
|
|
|
|
|
|
|
发表于 19-2-2012 06:15 PM
|
显示全部楼层
Let y=m^-1[k(x)]
then m(y)=k(x)
6/(y-1)=4-3x
y=[6/(4-3x)]+1
y=(10-3x)/(4-3x)
m^-1[k ...
Allmaths 发表于 19-2-2012 05:12 PM 
这个不是很明白,为什么y=[6/(4-3x)]+1?
然后为什么要let y =m^-1 [(k(x)] |
|
|
|
|
|
|
|
发表于 19-2-2012 08:20 PM
|
显示全部楼层
这个不是很明白,为什么y=[6/(4-3x)]+1?
然后为什么要let y =m^-1 [(k(x)]
lin96 发表于 19-2-2012 06:15 PM 
因为Let y=m^-1 [(k(x)], 你就能把function m inverse回去。。
所以就变成m(y)=k(x), 更方便你做。。
如果你不Let y=m^-1 [(k(x)], 你就要找inverse function m后才能算出答案。。会用更多时间。。
m(y)=k(x)
6/(y-1)=4-3x
y-1=6/(4-3x)
y=[6/(4-3x)]+1
y=(10-3x)/(4-3x)
之前你Let y=m^-1 [(k(x)], 然后你又得到y=(10-3x)/(4-3x), 所以你可以conclude y=m^-1 [(k(x)]=(10-3x)/(4-3x) |
|
|
|
|
|
|
|
发表于 29-2-2012 05:16 PM
|
显示全部楼层
It is given that m and -2 are the roots of the quadratic equation 3x^2 + x - n=0, find the values of m and n |
|
|
|
|
|
|
|
发表于 29-2-2012 05:50 PM
|
显示全部楼层
It is given that m and -2 are the roots of the quadratic equation 3x^2 + x - n=0,
find the values of m and n
m-2=-1/3
-2m=-n/3 |
|
|
|
|
|
|
|
发表于 7-3-2012 03:11 PM
|
显示全部楼层
1)if alfa and beta are the roots of the quadratic equation (2x-3)/8 = (3-2x)/5x , find the value of alfa^2 + beta^2
2)Given that one of the roots of the quadratic equation 5x^2-4x+r=0 is twice the other root, find the value or r.
请帮忙!明天就考add math了! 感恩! |
|
|
|
|
|
|
|
发表于 7-3-2012 09:43 PM
|
显示全部楼层
1)if alfa and beta are the roots of the quadratic equation (2x-3)/8 = (3-2x)/5x , find the value of alfa^2 + beta^2
(2x-3)/8 = (3-2x)/5x ====> ax^2+bx+c=0
x1+x2=-b/a
x1*x2=c/a
x1^2+x2^2=(x1+x2)^2-2*x1*x2 |
|
|
|
|
|
|
|
发表于 7-3-2012 09:44 PM
|
显示全部楼层
2. Given that one of the roots of the quadratic equation 5x^2-4x+r=0 is twice the other root, find the value or r.
x+2x=4/5
x*2x=r/5 |
|
|
|
|
|
|
|
发表于 7-3-2012 09:56 PM
|
显示全部楼层
|
|
|
|
|
|
|
发表于 4-4-2012 09:15 PM
|
显示全部楼层
simplifying algebraic expressions by using laws of indices
show that:
25^x-1 + 5^2x+1 = 5^2(x-1)(126)
这题不会做,谁可以帮帮忙? 谢谢! |
|
|
|
|
|
|
| |
本周最热论坛帖子
|