佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

楼主: Suaniam

地质学

[复制链接]
 楼主| 发表于 2-12-2006 10:07 PM | 显示全部楼层

成 因 矿 物 学

成因矿物学是研究矿物成因及其应用的矿物学分支学科。矿物是自然环境的产物,其中储存着其成因和找矿的信息,研究这些信息,是成因矿物学的中心课题。

    成因矿物学思想最初是由苏联学者维尔纳茨基于1890~1911年提出,他的学生费尔斯曼提出了成因矿物学这个术语和矿物标型学说,并应用它判断伟晶岩的形成条件和含矿性。拉姆多尔把矿物标型学说引入矿床学,提出矿石的标型矿物、标型组合及标型结构构造。

    格里戈里耶夫在1947~1955年提出矿物个体发生史的概念,1962年又提出“矿物单体和集合体的发育过程,统称为个体发生史”的见解。1963年,拉扎连柯在《成因矿物学原理》一书中较系统地阐明了成因矿物学理论体系,并总结了矿物标型及其应用,使成因矿物学发展成为独立的学科。

    1979年拉扎连柯提出矿物成因分类纲要,并在矿物成因分类中引入矿物标型学说。中国陈光远与其学生于1963年提出闪石、绿泥石、黑云母、石榴子石等矿物的成因分类和成因矿物族的概念。1987年陈光远等在其《成因矿物学与找矿矿物学》一书中进一步完善了成因矿物学理论体系。



    成因矿物学主要研究矿物的发生发展、形成和变化的条件和过程,即矿物发生史;矿物形态、成分、性质、产状的内在联系及其对介质的依赖关系,反映介质状态和条件的宏观标志和微观标志,即矿物的标型性;矿物和矿物组合的平衡共生及其时空分布规律;矿物的成因分类,主要根据不同成因的同一矿物种或族具有的化学成分特点,并结合其形态、性质等标型,对某种或族的矿物进行成因分类,建立体系。

    成因矿物学实践性很强。它是矿物学联系生产实际的桥梁。如岩石和矿石都是矿物集合体,而矿物如实地记载了由岩石和矿石所组成的地质体的形成与变化全过程,它可为地质体的成因及成岩成矿作用演化提供成因信息。因此,成因矿物学研究具有找矿和评价地质体成因与含矿性的意义。



    矿物标型学说直接可为找矿勘探服务,矿物标型的定量参数经统计加工,能有效地圈定远景和找矿勘探靶区,并可预测深部及外围的隐伏矿体。天然矿物形成条件的研究可为人工矿物材料的生产提供有效途径和方法。

    此外,地热矿物标型研究,涉及能源问题,活动断层的矿物标型研究,涉及工程设施问题等。成因矿物学还有其理论意义,对矿物晶体化学理论深化,对岩石学和矿床学的成因学说的发展等都有推动和促进作用。

    成因矿物学要解决地质体的成因与含矿性,所以岩石学、矿床学、地层学和古生物学与它关系密切,它又是研究矿物形成条件的学科,因此它与实验矿物学、实验岩石学相辅相成。



    矿物对外界应力反应十分敏感,因此与构造地质学也密切相关。成因矿物学和找矿勘探学都为找矿与勘探服务,因此两者密切联系。成因矿物学还与固体物理学、波谱学、物理化学和胶体化学等学科有关。


source: ikepu
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 2-12-2006 10:10 PM | 显示全部楼层

地 层 学

地层学是研究地壳表层成层岩石的学科。地层指地壳表层成带状展布的层状岩石,在地表岩石露头中,层状岩石占有很高的比例。

    地层学研究的主要范围是地层层序的建立,及其相互间时间关系的确定,即地层系统的建立和地层的划分与对比。这是一切地质工作的基础,所以地层学是地质学的一个基础学科。许多重要矿层和有用岩石都直接属于地层的一部分,因而地层学又有着重要的应用意义。

    为了建立地层之间的时间关系,19世纪初期就形成了一些地层的基本概念。地层层序律说明地层沉积的原始位置近于水平,老者在下,新者在上。化石顺序律认为不同的地层含有不同的化石,可利用不同化石特征鉴别地层。19世纪地层学的主要工作是利用化石逐步建立了统一的地层系统,就是现代所称年代地层学。

    到19世纪末,人们发现同时期形成的地层具有不同的岩性,这种横向变化导出了岩相横变的概念。德国学者瓦尔特把岩相横变同海侵作用联系起来,解释了时间界面同岩相界面的关系,称为瓦尔特定律。岩相的研究说明岩性界限在多数情况下,并非时间界限,所以除年代地层学以外,还须建立岩性或岩石地层学。

    20世纪30年代以来,详细的地层和生物群的对比研究建立了生物地层学。年代地层学、岩石地层学和生物地层学一直是地层学中的主要分支学科。50年代以后,由于研究范围的扩大和研究手段的发展,出现了不少新的地层分支学科,如磁性地层学、地震地层学、事件地层学、层序,地层学等。



    地层学主要研究地层的层序关系、接触关系和空间变化的关系。地层之间的接触关系可以是连续的也可以是不连续的。短期的沉积中断形成地层间的间断关系。长期的沉积间断,经过基盘抬升,构造变动和陆上剥蚀,与上覆地层间则形成多种类型的不整合关系。

    关于地层之间的空间变,化关系,也有一系列的分析方法和概念。多数地层属于沉积成因,根据现代沉积与其生成环境的关系,判断地层形成时的沉积环境,称为沉积相分析或岩相分析。同样,根据现代大陆内部、大陆边缘和海盆不同构造条件下形成的沉积特征,判断地层沉积时构造环境,称为沉积组合分析或建造分析。

    在较长时间内形成的一系列地层反映了所处构造环境的不断变化,可称为沉积组合序列。组合系列的总体特征即是地层沉积类型。地层的沉积类型反映了构造环境的空间分异。一般可按构造活动性区别为稳定类型、过渡类型和活动类型。

    为了概括地反映各区地层沉积类型的总体特征及其在时间上的发展交替,就有必要进行地层区划,称为地层分区。为了使地层知识、概念、方法系统化和规范化,使地层学者在工作中有所遵循,有共同语言,便于学术交流,还须研究地层分类和名词术语等,这些内容都可归入地层指南(地层规范)。

    地层学的主要分支包括年代地层学、岩石地层学和生物地层学。年代地层学以地层的地质年代归属为主要研究内容,以时间界面为准划分地层,与地质年代表一致是建立地层系统的基本要求。岩石地层学以地层的岩性特征为主要研究内容,以岩性界面变化为准,划分地层,是建立区域地层层序的主要方法。生物地层学以地层所含生物化石为主要研究内容,以生物群的交递变化为准划分地层。由于生物演化具有全球的同时性和一致性,所以生物地层研究是确立地质时代表的重要手段。

    现代地层学扩展了研究范围,深化了地层类型及其时空分布与古环境、古构造的关系,加强了历史的、综合的研究。现代地层学还大量的使用了新的技术方法,开辟了新的领域,形成了新的分支学科,使地层学研究更为深入和准确。

    磁性地层学,利用地层的岩石磁性可作岩性划分的依据,更重要的是利用天然剩磁确定地层形成时古磁极的位置和正反方向等,作为全球性对比和古大陆位置再造的依据。

    地震地层学,使用地震波反射提供的地层界面信息,用于地下和海底地层界面的确定。层序地层学利用由间断面分开的、由沉积体系构成的地层层序划分和对比地层。间断面接近于等时面,层序接近于旋回层。层序地层学是地震地层学的深化和发展。

    化学地层学,依据地层中化学元素含量分布特征,进行区域地层的对比;也可利用不同时代化学元素含量的变化,推断地球化学环境演变的规律。

    同位素地层学,利用放射性同位素测定岩石生成年龄,为年代地层系统提供年龄标定数据,称为地质测时学或地质纪年学。

    生态地层学,主要从事古生物生态环境的研究,与沉积环境研究相结合,使生物地层学的研究有了明显的提高。

    定量地层学,是指利用计算技术对地层的各种信息数据进行处理(使用较多的是用化石群的统计分析),以优化地层的划分和对比,提高生物地层学的研究精度。

    事件地层学的出现与地质事件概念和灾变概念的提出密切相关。事件地层学将突然发生的灾变事件形成的影响用于地层的对比,和用于地层界限的划分,取得了重要的成果。所谓突发的灾变事件主要指全球性事件,例如全球性地磁场的变化,全球性海平面的变化以及水圈气圈物化条件的阶段变化,以及由此引起的沉积作用和生物界的明显改变。

    此外,还有地外事件,如陨星撞击等形成的灾变。事件地层学的重要性在于其全球同时性特征,以多学科综合研究为手段,用于地层界限和地层对比的研究,提高了准确性,也促进了地层学研究的全面发展。


source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:12 PM | 显示全部楼层

层 序 地 层 学

层序的基本概念在18世纪晚期即已提出,认为地层的顶、底界是不整合的单位。但第一次明确提出层序一词,并用于北美大陆古生代地层划分的是斯洛斯。

    到了20世纪50年代后期,美国地质学家韦尔等,在研究了大量资料的基础上,于1965年提出了第一代的全球海平面相对变化曲线和地震地层学基本原理,成功地解决了北海盆地的中生代地层划分,引起了石油地质界的重视,并于1977年出版了《地震地层学在油气勘探中的应用》一书。它标志着地震地层学的诞生和层序地层学的奠基。

    1987年,美国哈克、韦尔、哈登博尔等,在总结各项成果的基础上,提出第二代海平面相对变化曲线,并系统地提出层序地层学的基本理论与概念。出版了《层序地层学原理》,它标志着层序地层学进入成熟和蓬勃发展阶段。

    层序地层学是在地震地层学的基础上发展起来的,它概括了地震地层学的基本概念和方法,并综合了生物地层学、同位素地层学、磁性地层学、沉积学和构造地质学的最新成果。其基本原理是构造运动、全球绝对海平面的变化和沉积物供应速度综合作用的结果,产生了地层记录,也可称作地层信号。这些记录反映了上述诸作用的规模、强弱、持续时间和影响范围。其中,构造作用与海平面变化的结合,引起了全球性相对海平面变化,它控制了沉积物形成的潜在空间。

    构造作用与气候变化的结合,控制了沉积物的类型和沉积数量,以及可容纳空间中被沉积物充填的比例。而河流和海洋环境中的沉积作用,又由于水流与地形和水深间的相互影响而引起不同的岩相分布。

    上述作用按其规模可以分为六级:持续时间大于5000万年的称为一级周期,500~5000万年的为二级周期,50~500万年的为三级周期,10~50万年的为四级周期,1~10万年的为五级周期,小于1万年的为六级周期。

    一级周期的起因是地壳的拉张、负载引起的地壳下挠、地壳的热冷缩等,其地层记录表现为沉积盆地的形成与发展;二级周期的起因是板块边界的调整、热的扰动、大洋盆体积的变化等,表现为大规模的海进-海退旋回、大规模的大陆淹没;三级周期的起因是局部或区域性的应力释放、气候的变化、水体体积变化引起的海平面相对变化,地层记录表现为褶皱、断层、岩浆活动、刺穿作用和层序地层学的基本单位沉积层序的形成;第四、五、六级周期的起因分别是气候和水体体积的变化、地球轨道偏心率的变化、地轴倾角的变化以及岁差引起的米兰科维奇频率 。

    一般认为,海平面的升降是全球性的,而构造活动是地区性或区域性的。尽管后者的强度通常明显地大于前者,但是构造活动只能增强或削弱层序的边界不整合面和层序内部的沉积间断面,但不能制造这些面。

    层序地层学主要根据露头、测井、地震资料和高分辨率的生物地层学断代资料,进行沉积层序分析,解释层序、体系域、准层序,建立年代地层框架;根据层序边界编制构造沉降和总沉降曲线,并解释盆地的地质历史;

    将板块碰撞或离散事件、重大海进-海退旋回、岩浆活动、重大不整合面等构造事件与地层特征联系起来,进行构造-地层综合分析,划分构造-地层单元、编制相应图件、利用计算机模拟它们的发展历史;

    研究层序内部的不同绥次地层单位,包括沉积体系域、沉积体系、准层序组和准层序。确定其地层分布模式和相带分布;编制年代地层框图、海面升降曲线、古地理图件、岩相图件等,以进行综合解释;

    圈定有利生油和有利于形成油藏的地段,提出可供勘探的井位,圈定有利于形成其他矿产,如煤、铁、磷灰石等沉积矿床的地段,提出可供勘探的靶区。

    层序地层学的诞生,提出了一系列新的概念。依照这些新概念,几乎一切与沉积地质学有关的学科,都要接受重新检验和研究。

    层序地层学下一步重要发展方向是建立和完善不同构造、环境背景下的不同级次的层序地层模式,特别是目前研究薄弱的陆相环境以及元古宙的模式;改进和完善全球海平面相对变化曲线,以及统一的年代地层表;在层序地层学理论与高分辨率地震岩性勘探和计算机技术相结合的基础上,实现油藏、气藏、煤田和沉积矿床等的钻前预测和合理的资源开发。

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:13 PM | 显示全部楼层

地 震 地 层 学

地震地层学是以反射地震资料为基础,进行地层划分对比、判断沉积环境、预测岩相岩性的地层学分支学科。主要用于各种沉积矿产,特别是油气资源的调查勘探。

    地震地层学是介于勘探地震学和沉积地层学的边缘学科,其理论基础也来自这两门学科。应用沉积地层学的知识,可以了解不同环境下形成的沉积体的三维外形轮廓、内部不同岩层的成分和分布,以及与其他沉积体的边界邻接关系等,从而可以根据沉积体的外形轮廓与邻接关系,反推其形成环境及岩性分布。

    而勘探地震学中的波长和分辨率的理论、薄层干涉理论、以及地震处理过程中波形和振幅等畸变的知识,则规定了用地震资料来了解沉积体形态与邻接关系的可靠性、局限性和多解性,由于这两方面理论的发展与结合,在20世纪70年代形成了地震地层学。

    地震地层学中最基本的原理是:地震反射同相轴基本上是沉积等时面,而非宏观岩性界面的反映。由此基本原理出发,可以推演出本学科的主要内容:

    各反射同相轴的系统中断面表示它们反映的沉积过程的间断,这种间断面也具有相对等时性,即此面之上的所有沉积均比此面以下的任何沉积为新,而在上下两间断面之间不被间断面隔开的地层,可视为大体上连续沉积的一个地层单元,称为地震层序,层序的上下边界均被间断面或与其相当的整合面完全封闭。

    层序内不同地点的沉积虽属同时生成,但其生成环境与岩相成分可能有差异。这种差异反映在剖面上的反射同相轴的平行性、连续性、强度(振幅)、波形及显示频率等特性的变化上。故可从这些显示特征(称为地震相)预测生成坏境和岩相成分。

    地震地层学的研究方法有两大趋向。首先,着重考虑沉积体的外形、侧向接触关系及其岩相环境等方面的对应关系,将地震剖面上的反射同相轴视为接近于理想的地质体的反映而较少考虑畸变。这种方法常用于区域地震资料的地层解释,称为区域地震地层解释。

    其次,利用物探的理论分析以及改变参数扯理和模拟方法,详细地研究地震剖面中局部反射产生变化的地质原因。由于这种研究涉及具体岩性的解释,常称为岩性地震研究。又因此种研究常牵涉复杂的计算过程,往往只能限于局部地区的分析,也被称为局部地震地层研究。

    地震地层学近年来迅速发展,并衍生出层序地层学和油藏描述(或油藏钻前预测)两个分支。它们代表了地震地层学今后的发展方向。

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:14 PM | 显示全部楼层

生 物 地 层 学

生物地层学是研究生物化石的时空分布、地层形成发育规律和确定地层相对时代的地质地层学分支学科。生物地层学这一术语是比利时学者多洛于1904年首次提出的,意指应用古生物学方法研究的地层学。

    史密斯在1816年发表的名著《用生物化石鉴别的地层》中,首次提出生物顺序发生的概念,既在整个地质时期内各种生物一个接着另一个按先后顺序出现。并指出,相同的层总是发现有相同的叠覆次序,并且包含相同的特有化石。这就是说化石顺序律与地层层序律是一致的。

    生物顺序发生是生物进化的结果。生物从低级到高级,从简单到复杂,从不完善到完善的过程是一个前进性的发展。1893年,多洛把生物前进性的发展称为进化不可逆法则。因此,化石是鉴别地层相对时代的最好工具。

    生物化石在不同的地质年代中显示着各不相同的特定面貌,而同一地质年代的化石却有着大致相同的面貌。这种生物阶段性的发展与地质历史的阶段性是密切结合在一起的,因此就有可能用生物发展面貌命名大的地质年代,如古生代、中生代和新生代等。

    物种是形态稳定的生物分类单位,而化石种是生物地层学研究的基础材料。在利用化石种作地层对比时,含有相同化石种的地层被认为是同期的地层。但一个化石种的持续期估计在50万年到200万年之间,且不同化石种的时间延限不同,所以,以化石为基础的“地质同时”,不是一个精确的时间值。因此,生物地层学的地质同时性必须与通常的时间概念相区别。

    进化速率是地层对比中衡量化石价值的主要标志。对进化速度快,如笔石、菊石、蜓等类别的属种的时限只占“阶”的一部分,它们的结构特征更替迅速,可较精确地代表一定层位的相对时代,利用这种化石作地层对比的标准性较高;进化缓慢的属,如舌形贝 (从奥陶纪延续到现代)等保守类型,用于地层对比的标准性就低。

    新化石类型的出现和旧类型的绝灭都是地层划分的重要依据,但当新类型的出现与旧类型的孑遗分子混杂在一起,在地层划分上有争议时,一般优先考虑新类型,因为新类型的大量出现预示新阶段的开始。

    地层中所保存的生物化石及其所代表的自然环境称生物相。生物相与岩相结合是恢复古环境的主要手段。只适应特定环境的生物称为狭生性生物,如珊瑚礁主要适应热带或亚热带环境适宜的海区,底栖的三叶虫等常限于浅海环境等。有重要指相意义的生物化石称为指相化石。

    生物地层学方法是解决地球上出现生物以来的地层划分、对比的主要手段,随着先进技术的采用(如电子显微镜等),它在解决前寒武纪后期的地层问题显得越来越重要。

    地理分布广、代表地层时代较短的化石称为标准化石,用标准化石作地层对比是生物地层的传统方法。确定标准化石是一个实践经验积累的过程,经过实践检验的标准化石是地层对比的可靠工具。

    共生在同一层位的化石称为化石群或化石组合。化石组合反映其所生存的地质时代的生物群面貌,同时也能指示古地理环境。用化石组合法研究划分对比地层,可全面考虑时限明确的化石属种作为代表,并结合与其他化石共存关系的研究,较严格地进行地层对比。各种生物化石所代表的时限,取其最稳定的。

    为了在理论上说明“生物顺序”,就需要研究化石种的亲缘关系,恢复它的演化顺序。当我们从生物学的角度证明了甲种是乙种的祖先,就可无误地断定它们出现的先后顺序。为确定地层的相对时代提供理论依据。

    近30年来,数字分析的各种方法已在生物地层学中广泛应用。1964年,肖把回归分析引入生物地层对比。肖引用距离公式,统计进行对比的各剖面中化石种的出现和消失之间的厚度,求出各个剖面间的对比方程。对比方程显示剖面所在地某一地质年代的沉积速率,并可做为时间对比的依据。多元统计方法如群分析、主成分分析、马尔可夫过程等都已有人尝试应用于生物地层问题分析,目前虽处于开创阶段,已日渐引起重视。



source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:16 PM | 显示全部楼层

事 件 地 层 学

事件地层学是研究利用地质事件及其地质记录,来对比地层和确定地层界线的地层学分支学科。根据事件地层学的观点,地层构架是由一系列缓慢渐变过程和短暂的突变或灾变事件组成,而突变或灾变事件在地层研究中有特殊意义,地层界线本质上应反映突变。因此,事件地层学与以渐变论和均变论为基础的传统地层学有显著区别。

    事件地层学作为一个独立的分支学科,是在20世纪80年代形成的,但与之有关的认识则要早得多。人们早就认识到地质历史上的各种地质事件,如生物突变或生物大量绝灭、地壳褶皱运动和升降运动、火山喷发、气候异常、地磁极倒转、海平面升降变化、沉积环境突变和地球化学条件突然改变等,并应用这些变化对比和划分地层。

    1973年,英国地质学家阿格提出了“事件地层学”的概念,但主要是涉及地球本身发生的事件。70年代末~80年代初,美国自然科学家阿耳瓦雷茨等对白垩系与第三系之间界线含铱量的研究,提出在界线处发生过外来天体撞击地球事件的假说。这个假说进一步推动了事件地层学的发展。



    在白垩-第三系界线上全球的恐龙灭绝,海洋中的菊石动物永远消失,一部分有孔虫、珊瑚及超微生物死亡。据统计,在界线之下的白垩纪末期有各类生物2868个属,界线之上的第三纪初期仅有1502个属,说明以这条线为界,有近一半生物绝灭。从种-级统计,则有75%生物消失。

    为了探求恐龙及其他生物突然发生全球性绝灭的原因,对这条界线进行详细研究,发现在界线处稀有元素铱异常值突然增高,类似现象在全球各大陆和大洋的多处均有发现。并在有些地点见到表面急速冷却形成特殊纹饰的微球粒。上述特殊现象,尤其是铱异常的发现,导致产生天体撞击地球突变假说。

    根据这种地外灾变事件和它触发的地内事件,使环境突然改变、沉积物突然变化,生物突然大量绝灭,形成了独特的地层界线。由于宇宙事件发生突然、时间短暂、规模巨大,影响全球,其地层记录具有“全球等时性”的特点,是十分理想的地层对比标志。后来对其他地层界线的研究,也发现类似白垩第三系界线的情况。80年代,事件地层学已不仅涉及地内事件,而且扩展到宇宙事件。

    任何地质事件都可能在地层中留下相应的地质记录。根据这些记录便可推断事件的类别、性质及规模,探讨事件的成因及其地层价值。地质事件通常分地内事件和地外事件(宇宙事件)。地内事件包括生物绝灭、地磁极倒转、海平面升降、火山喷发及火山灰降落、洋中脊体积变化、地壳运动、气候变化、沉积环境变化、缺氧环境出现、浊流和风暴等;地外事件包括陨星和彗星撞击地球、超新星爆发、太阳辐射强度变化等。这些事件既有突变的,也有灾变的;既有地质历史上极罕见的,也有周期性出现的。



    地质事件造成的影响及产物在地层构架中以生物界变革或沉积特征变化记录下来,成为事件地层学研究的基本依据,成为地层对比划分的标志。例如,火山喷发形成火山岩层,大范围内火山灰降落形成凝灰岩;全球性气候降温可导致冰川广布,堆积冰碛岩;地磁极倒转都可能在各地的沉积物中被记录下来;天体撞击能形成特殊的粘土层,其岩石性质、产状、地球化学特点等与普通沉积岩十分不同,其厚度小、分布广、富含铱等稀有元素,形成所谓“界线粘土层”。

    同一事件的地层记录在不同地区的地层剖面上是同时发生的。等时性是衡量一种事件的年代地层学价值的最重要标准。一般地说,一个事件的等时性随着地域扩大而变差,事件等时性与事件传播速度有关,传播速度越快,等时性越好。地外事件的等时性一般比地内事件的要好。大规模的外星撞击地球造成的地层记录可能是全球等时性。当前主要通过生物地层学、磁性地层学及绝对年龄测定等方法来论证事件的等时性。

    确定地层界线是地层工作的重要任务,当前最迫切的是确定年代地层界线。目前通常采用的是界线层型法。这一方法要求界线选在连续层序剖面的单一岩相中,要以谱系上有祖裔关系的带化石作为确定界线的依据。由于界线层型法在确定界线时缺乏公认的标志,因此只能采用投票表决的人为方法决定地层界线。

    与此同时,德国古生物学家瓦利泽尔等认为系统以至阶的界线都发生过某些地质事件,形成了一种“事件地层界线”,主张用事件地层界线作为地层界线。事件地层界线比界线层型有标志明显、易于识别、方便野外追溯等优点。目前正在研究的具代表性的事件地层界线有:震旦-寒武系、二叠-三叠系、白垩-第三系、奥陶-志留系、泥盆-石炭系及弗拉斯-法门阶等界线。

    恢复地壳的发展史是地层学的基本任务。整个地质历史是由一系列缓慢渐变过程和无数急剧突变或灾变事件构成的。在地层剖面中,缓慢淅变过程常以连续的沉积物和古生物演化系列保存下来,突变或灾变事件常表现为沉积间断、不整合、古生物演化系列中断和特殊的事件沉积层等。

    过去,不论进行盆地分析还是恢复某个地区的地质历史,往往侧重于渐变过程的历史分析,而忽视突变或灾变事件的地史意义。但事件地层学的观点认为,突变或灾变事件对地质历史进程的影响更为深远。例如,当前热烈讨论的某些地质时期发生的宇宙星体撞击事件,据信对生物史和沉积史产生转折性的影响。因此,要恢复地质历史的真实面目。关键在研究各种地质事件。
回复

使用道具 举报

Follow Us
 楼主| 发表于 2-12-2006 10:19 PM | 显示全部楼层

冰 川 地 质 学

冰川地质学是以鉴定古代冰川遗迹为基础,研究古冰川的发育规律和特征、冰期与间冰期的气候变迁及其起源,进而了解它的地质作用和影响的地质学分支学科,亦称古冰川学。



    冰川地质学从萌发到形成迄今不过200年历史。1779年法国的苏萨里沿袭当时流行的水成说,首次使用“漂砾”一词,解释侏罗山石灰岩上的花岗岩漂砾的成因。1795年,英国的赫顿提出这些漂砾是由比现代大得多的冰川搬运而来的观点,从此诞生了古冰川作用和扩张的概念。1832年德国的伯恩哈德提出北欧大陆曾发生过大规模冰川作用的概念。1837年瑞士的阿加西提出“大冰期”概念和冰期术语,从而充实了自维涅茨、沙尔庞捷和施琴帕尔等一代人开创的大陆冰川作用的理论。

    1852年,英国的兰姆赛论证了苏格兰和威尔士古冰川作用的地层中有两次冰期的遗迹;1858年,瑞典的希尔发现在两次冰期之间的沉积层中确有温暖气候带的植物化石群遗迹,称“间冰期”。直到詹姆森和盖基相继发表论文,才真正肃清漂冰说的长期干扰,揭开了冰川地质发展史上新篇章;1898年奥地利的彭克划分出阿尔卑斯山北麓的四次冰期。此时北欧、北美的四次冰期也得到验证。



    17世纪末至20世纪初,研究古冰川遗迹还证明,地球有史以来,曾发生过多次大冰期,公认的有“三大冰期”,分别发生在震旦纪、石炭-二叠纪和第四纪。研究冰期起源问题与大冰期概念的提出几乎同时开始,探索得出了一些周期性和非周期性的看法,但是都不能解释冰期的出现问题。20世纪50年代,美国的弗林特将这门学科正式命名为冰川地质学。

    在中国的冰川地质研究起步较晚,1907年,美国的威利斯等发现古生代南沱冰碛层,后被李四光订正为震旦纪。李四光等20世纪20年代开始研究第四纪冰川,1947年他发表了《冰期之庐山》一书,为中国第四纪冰川研究奠定了基础。50年代中国获得了许多冰川地质资料。但对中国东部第四纪冰期有无冰川遗迹的问题,至今尚未取得一致认识。

    冰川地质学的研究内容可概括为四个方面:

    古冰川的发生、发展和它消亡过程中所遗留的各类形迹特征,包括鉴别各种冰蚀地形、冰碛地形、冰缘地形、冰川沉积物和所有冰溜遗痕的特征,进而认识它们在空间上相互配置的关系和分布规律,藉以确定古冰川的性质和类型;

    冰期与间冰期的划分对比。包括查明冰期、间冰期递变的次数,每次冰期与间冰期延续的时间及其温度升降幅度等,以便与其他地区的冰期、间冰期进行对比,藉以了解古气候变化规律对古地理带的移动、古生物群落的迁徙、海陆的变迁以及各种相关沉积物的分布所产生的影响;

    冰期的起源和对地球发展史、生物演化史,以及地球资源形成的作用与影响,预测气候变迁的未来趋势,达到认识、利用、改造自然的目的;

    运用古冰川活动规律解决有关生产问题。诸如勘探打钻、寻找地下水源、大型水库的清基、大型建筑物的奠基、追索砂矿及其发源地等。古冰川的消长对湖面海面升降和自然环境变迁的影响也是当前一项重要的研究课题。

    冰川地质学的研究主要通过古冰川遗迹野外调查,收集各项冰川遗迹的证据和资料,恢复古冰川面貌、确定古冰川类型,初步划分冰期与间冰期。

    为了配合古冰川遗迹调查,通常需要采集各类有机和无机物样品进行测试分析鉴定,从微观检验深化宏观认识,取得冰碛和其他沉积物的微结构证据,以及温湿度和环境变迁的数据。最后再根据野外调查和室内测试鉴定数据,进行综合分析研究,确定各期古冰川分布规律和冰期、间冰期年代序列,确立古冰川类型及其递变模式。与其他地区的冰期和间冰期对比,为探讨冰期起源问题积累资料。



source: ikepu

[ 本帖最后由 Suaniam 于 2-12-2006 10:20 PM 编辑 ]
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:22 PM | 显示全部楼层

地 震 地 质 学

地震地质学是运用地质学的理论和方法研究地震成因、地震活动规律的学科。它是地质学和固体地球物理学之间的一门边缘学科。地震是重大自然灾害之一,是现代地球运动的直接反映。地震地质学在地震预报、减轻地震灾害及研究地球动力学方面有重要的现实意义及理论意义。

    20世纪初期人们已经注意到地震活动都集中于最近时期火山和构造活动强烈的地带。1907年,美国的霍布斯提出地震构造线的概念。1911年,美国的里德根据对1906年旧金山大地震的研究提出了关于地震成因的“弹性回跳”假说,把地震的发生和断层活动相联系。

    40年代至50年代,苏联的古宾以地质、地球物理、地震以及其他定性与定量的资料综合分析的地震构造法来分析地震发生的过程与原因,并作为中长期地震预报与地震区划的主要依据。50年代中期,苏联的索洛年科首先使用地震地质学这一术语,并在用地质学方法发现与确定古地震方面做了开创性工作。

    20世纪60年代,美国的赛克斯运用板块学说对板缘地震带的地质背景作了有说服力的论证。美国华莱士首次提出用断层长期平均滑动速率计算强震重复间隔的方法,并用于圣安德列斯断层的地震危险性分析。1977年他又对盆地山脉省正断层崖坡度与年龄关系作了定量分析,奠定了活动断层研究的基础。1978年美国西沿圣安德列斯断层开挖了探槽,建立了六世纪以来的古地震事件年表。

    地震地质学的研究内容主要有地震构造的研究、活动断层与古地震研究、地震区划、诱发地震和震害研究等几个方面。

    地震构造主要是研究地震活动的空间分布及其强度、频度等特点与各种不同类型地质构造之间的关系。如一个地区的构造活动性、深部地质特征、地貌发育特征、地壳形变特征等与该区地震活动之间的定性和定量关系。并依此划分发震构造与非发震构造。

    活动断层与古地震的研究是用来查明活动断层上全新世以来的古地震事件,以及活动断层活动的性质、方式和速率,以判断断层的强震重复间隔及今后地震危险性。

    地震区划研究,包括建立正确的地震区划的原则与方法,潜在震源区的预测与划分,地震影响场的研究,地震危险性分析等多方面的课题。其中,关键性的潜在震源区划分很大程度上依赖于地震地质研究的深入程度。

    水库地震是诱发地震的主要类型,其形成与发生已被证实与水库的地质构造条件有关。地震灾害在不同的地质地貌条件下有相当大的差异,对震害地质与诱发地震的研究对于工程防震、抗震和地震小区划都有重要价值。

    地震地质学的研究方法从根本上来说仍然是地质学的类比方法,但由于地震地质学研究对象的特殊性以及现代化技术的发展,也采用许多特殊的研究方法、手段和技术。地震地质学着重研究晚第四纪地壳运动,因而广泛采用了遥感信息技术,包括野外地震地质调查中使用的经过各种技术处理的卫星照片和不同种类的航空照片。

    各种大地测量法常用于观测与地震活动直接相关的现代地壳变动,其中除常规的水准复制和三角测量外,还广泛采用了跨活动断层的流动观测及固定点连续观测。近年来,还使用人造卫星激光测距、超长基线测量和全球定位系统来了解地壳各大块体及大断裂的运动状况。

    地震地质工作中也往往使用地球物理探测手段,尤其是采用浅层地球物理勘探了解活动断裂的特征,如浅层地震、地震雷达等。实验室途径也是地震地质研究中不可缺少的手段。地质年代测定技术,如碳-14法、钾-氩法、热释光法等在地震研究中被广泛应用来确定古地震年代及断层滑动速率。断层岩的显微构造研究是地震地质学近年来发展很快的一个方面,可望提供多方面的断层活动信息。数理模拟在研究地震构造及地震区划中常被使用。

    为了预测和减轻地震灾害,做好地震烈度区划,探索包括中长期预报在内的地震预报,除了继续深入研究强震区表层构造特征外,还要加强对深部构造,包括多震层、震源构造、深部与表层构造关系等问题的研究,加强地球动力学,特别是现代地壳运动和应力场状态与地震活动关系的研究,了解地震发生的过程与机制。
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 2-12-2006 10:23 PM | 显示全部楼层

水 文 地 质 学

水文地质学是研究地下水的数量和质量随空间和时间变化的规律,以及合理利用地下水或防治其危害的学科。

    在不同环境中地下水的埋藏、分布、运动和组成成分均不相同。查明上述各方面状况,可为科学地利用或防治地下水提供根据。水文地质学对地下水的研究,着重自然历史和地质环境的影响,同主要用水文循环和水量平衡原理研究地下水的地下水水文学关系密切,只是研究的侧重点稍有不同。

水文地质学发展简史

    人们早在远古时代就已打井取水。中国已知最古老的水井是距今约5700年的浙江余姚河姆渡古文化遗址水井。古波斯时期在德黑兰附近修建了坎儿井,最长达26公里,最深达150米。约公元前250年,在中国四川,为采地下卤水开凿了深达百米以上的自流井。中国汉代凿龙首渠,是一种井、渠结合的取水建筑物。在利用井泉的过程中,人们也探索了地下水的来源。法国帕利西、中国徐光启和法国马略特,先后指出了井泉水来源于大气降水或河水入渗。马略特还提出了含水层与隔水层的概念。

    1855年,法国水力工程师达西,进行了水通过砂的渗透试验,得出线性渗透定律,即著名的达西定律,奠定了水文地质学的基础。1863年,法国裘布依以达西定律为基础,提出计算潜水流的假设和地下水流向井的稳定流公式。1885年,英国的张伯伦确定了自流井出现的地质条件。奥地利福希海默在1885年制出了流网图并开始应用映射法。

    19世纪末20世纪初,对地下水起源又提出了一些新的学说。奥地利修斯于1902年提出了初生说。美国莱恩、戈登和俄国安德鲁索夫在1908年分别提出在自然界中存在与沉积岩同时生成的沉积水。1912年德国凯尔哈克提出地下水和泉的分类,总结了地下水的埋藏特征和排泄条件。美国迈因策尔于 1928年提出了承压含水层的压缩性和弹性。他们为水文地质学的形成作出了重要贡献。

    泰斯于1935年利用地下水非稳定流与热传导的相似性,得出了地下水流向水井的非稳定流公式即泰斯公式,把地下水定量计算推进到了一个新阶段。20世纪中叶,苏联奥弗琴尼科夫和美国的怀特在水文地球化学方面作出了许多贡献。到第二次世界大战结束时,在地下水的赋存、运动、补给、排泄、起源以至化学成分变化、水量评价等方面,均有了较为系统的理论和研究方法。水文地质学已经发展成为一门成熟的学科了。

    20世纪中叶以来,合理开发、科学管理与保护地下水资源的迫切性和有关的环境问题,越来越引起人们的重视。同时,人们对某些地下水运动过程有了新的认识。1946年起,雅可布和汉图什等论述了孔隙承压含水层的越流现象。英国博尔顿和美国的纽曼分别导出了潜水完整井非稳定流方程。

    由于预测地下水运动过程的需要,促进了水文地质模拟技术的发展。20世纪30年代开展了实验室物理模拟。40年代末发展起来的电网络模拟,到50~60年代在解决水文地质问题中得到应用。

    由于电子计算机技术的发展,70~80年代,地下水数学模拟成为处理复杂的水文地质问题的主要手段。同时,同位素方法在确定地下水平均贮留时间,追踪地下水流动等研究中得到应用。遥感技术及数学地质方法也被引进,用以解决水文地质问题。对于地下水中污染物的运移和开采地下水引起的环境变化,引起广泛的重视。20世纪60年代以来,加拿大的托特提出了地下水流动系统理论,为水文地质学的发展开拓了新的发展前景。



水文地质学基本内容
    水文地质学是从寻找和利用地下水源开始发展的,围绕实际应用,逐渐开展了理论研究。目前已形成了一系列分支。

    地下水动力学是研究地下水的运动规律,探讨地下水量、水质和温度传输的计算方法,进行水文地质定量模拟。这是水文地质学的重要基础。

    水文地球化学是水文地质学的另一个重要基础。研究各种元素在地下水中的迁移和富集规律,利用这些规律探讨地下水的形成和起源、地下水污染形成的机制和污染物在地下水中的迁移和变化、地下水与矿产形成和分布的关系,寻找金属矿床、放射性矿床、石油和天然气,研究矿水的形成和分布等。

    供水水文地质学是为了确定供水水源而寻找地下水,通过勘察,查明含水层的分布规律、埋藏条件,进行水质与水量评价。合理开发利用并保护地下水资源,按含水系统进行科学管理。

    矿床水文地质学是研究采矿时地下水涌入矿坑的条件,预测矿坑涌水量以及其他与采矿有关的水文地质问题。

    农业水文地质学的内容主要包括两方面,一方面为农田提供灌溉水源进行水文地质研究;另一方面为沼泽地和盐碱地的土壤改良,防治次生土壤盐碱化等问题进行水文地质论证。

    地热是一种新的能源,如何利用由地下热水或热蒸汽携至地表的地热能,用来取暖、温室栽培或地热发电等,以及地下热水的形成、分布规律,以及勘察与开发方法等,是水文地热学的研究内容。

    区域水文地质学是研究地下水区域性分布和形成规律,以指导进一步水文地质勘察研究,为各种目的的经济区划提供水文地质依据。

    古水文地质学是研究地质历史时期地下水的形成、埋藏分布、循环和化学成分的变化等。据此,可以分析古代地下水的起源与形成机制,阐明与地下水有关的各种矿产的形成、保存与破坏条件。

    地下水的形成和分布与地质环境有密切联系。水文地质学以地质学为基础,同时又与岩石学、构造地质学、地史学、地貌学、第四纪地质学、地球化学等学科关系密切。工程地质学是与水文地质学是同时相应发展起来的,因此两者有不少内容相互交叉。

    地下水积极参与水文循环,一个地区水循环的强度与频率,往往决定着地下水的补给状况。因此,水文地质学与水文学、气象学、气候学有密切关系,水文学的许多方法也可应用于水文地质学。地下水运动的研究,是以水力学、流体力学理论为基础的,并应用各种数学方法和计算技术。

    水文地质学的发展趋势是:由主要研究天然状态下的地下水,转向更重视研究人类活动影响下的地下水;由局限于饱水带的含水层,扩展到包气带及“隔水层”;由只研究地壳表层地下水,扩展到地球深层的水。

    预计今后的水文地质研究,在下列方面将有突破:裂隙水与岩溶水运动机制和计算方法;地下水中污染物和温度运移机制和计算方法;粘性土的渗透机制;包气带水盐运移机制;水文地球化学和同位素水文地质学,地下水数学模型;地球深层水文地质。

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:25 PM | 显示全部楼层

海 洋 地 质 学

海洋地质学是研究地壳被海水淹没部分的物质组成、地质构造和演化规律的学科。研究内容涉及海岸与海底的地形、海洋沉积物、洋底岩石、海底构造、大洋地质历史和海底矿产资源。它是地质学的一部分,又与海洋学有密切联系,是地质学与海洋学的边缘科学。

    海洋覆盖面积约占地球表面积的71%。它是全球地质构造的重要组成部分,也是现代沉积作用的天然实验室。海底蕴藏着丰富的矿产资源,是人类未来的重要资源基地。海洋环境地质和灾害地质直接关系到人类的生产和生活。海洋地质调查还是海港建设、海底工程和海底资源开发的基础。因此,海洋地质学具有重要的理论和实践意义。

海洋地质学发展简史

    1872~1876年英国“挑战者”号进行环球海洋调查,第一次取得深海样品,发现了深海软泥和锰结核。 1891年由英国的默里和比利时的勒纳尔将这次凋查成果编制成第一幅世界大洋沉积分布图及写成《海洋沉积》一书,标志着近代海洋地质研究的开始。

    “挑战者”号之后的几十年问,海洋地质的研究进展甚微。1925~1927年,德国“流星”号调查船远航南大西洋,首次采用电子回声测深技术揭示了深洋底崎岖不平的地形,发现了纵贯整个大西洋的中央海岭;又用柱状取样管取样,进行样品的岩石学和矿物学研究,并首次推算了深海区的沉积速率。

    20~30年代,荷兰地球物理学家芬宁·梅因纳斯等使用潜艇在爪哇海沟和波多黎各海沟进行海洋重力测量,发现了与海沟有关的显著的重力负异常。这对海底构造,乃至全球构造理论的发展具有重大意义。1936年,美籍加拿大地质学家戴利用浊流解释海底峡谷的成因,推动了海底地貌学和沉积学的研究。

    第二次世界大战期间,由于海上战争的需要,许多国家致力于海底地形研究,绘制了一批详细的海底地形图;并大力开展声在水中传播规律的研究,为发展海洋地震勘探技术打下了基础。战后,由于海底油田开发的需要,海洋地质调查蓬勃发展。1947~1948年,瑞典国立海洋研究所所长彼得松率领瑞典“信天翁”号作环球深海考察,采用真空式活塞取样管取得长达23米的柱状样,研究了大洋沉积物的结构、厚度和沉积速率,并采用人工地震法研究海底构造。

    到40年代中后期,已经积累了有关大西洋、太平洋海底地形、海底沉积以及大陆边缘地质结构的大量资料。40年代末期,谢泼德的《海底地质学》,苏联克列诺娃的《海洋地质学》和奎年的《海洋地质学》先后问世。海洋地质学成为一门独立学科。

    20世纪50年代初期,回声测深技术大为改进,高分辨率的精密声呐投入使用,测程达万米,为编制各大洋洋底地形图提供了可靠的手段。同时,重力、磁法和地震探测等地球物理仪器也获得较大改进。这期间,奎年成功地进行了浊流的实验研究,指出浊流沉积具有递变层理。1952年,希曾和尤因研究了1929年纽芬兰附近大滩地震后的海底电缆折断事故,认为该事件是由强大的高速浊流引起。此后,浊流概念逐渐被广泛接受。

    1952~1953年期间,美国地质学家梅纳德和迪茨发现东北太平洋的大型断裂带,以后发现这种断裂带在世界各大洋有广泛的分布。这是提出转换断层概念的重要依据。

    1950~1958年,苏联“勇士”号调查船考察太平洋,通过测深改进了太平洋水深图,在马里亚纳海沟发现了大洋最深点,还采集海底长柱状样研究了lOOO万年来的气候演变和地质历史。

    大规模的海洋地球物理调查提供了大量资料。人们发现,洋底沉积层极薄,大洋地壳的结构与大陆地壳截然不同;特别是环绕全球的大洋中脊体系与条带状磁异常的发现具有深远意义。60年代初期,赫斯和迪茨在上述发现的基础上分别提出海底扩张说。1963年,瓦因和马修斯用海底扩张说解释海底条带状磁异常的成因。1965年,威尔逊提出转换断层的概念。

    由于上述发现使一度衰落的大陆漂移说重新复活,大陆漂移的活动论思想在地学界逐渐取得主导地位,并导致1967~1968年,摩根、麦肯齐和勒皮雄等提出板块构造说。板块构造理论是海洋地质研究结出的硕果,它从根本上动摇了以固定论哲学为基础的地槽论的统治,被称为地学的一场“革命”。

    1964年,美国一些研究单位发起成立地球深层取样联合海洋机构,1968年组织了深海钻探计划。该计划在15年期间历经96个航次,航程超过60万公里,钻井逾千口,至1985年出版了深海钻探初步报告80余卷。采用液压活塞取心技术,获得长数百米连续的未扰动样品。这项计划验证了板块构造模式的一些要点,出发现了许多新资料,促进了大洋地层学的发展和古海洋学的诞生。

    在技术方法方面,除深海钻探和取样技术外,这一时期还广泛采用潜艇观察、海底摄象、海底电视、海底着陆器及深海仪器拖运装置等观测手段和自动化装置。

    海底矿产资源进入了大规模的工业开发阶段,海底石油产量不断上升,海滨与陆架砂矿的重要性也日见增加,深海锰结核、多金属泥及海底块状硫化物矿床引起广泛注意。

海洋地质学基本内容



    海洋地质学的研究内容十分广泛,涉及许多学科的领域,具有极大的综合性,而且与技术方法的研究,特别是测深技术、地球物理、海洋钻探、海底观测和取样技术的研究有十分密切的联系。

    海底的地貌景观及其空间分布和成因,是海洋地质学的经典内容之一。海底有三个最主要的地形单元,即大陆边缘、大洋盆地和大洋中脊。大陆边缘是大陆和海洋的过渡部位,是海陆影响兼而有之的一部分海底;大洋盆地以深海平原和深海丘陵为主体,其上分布着长条状海岭和孤峰状的海山;大洋中脊是地球上最长的山系,多位于大洋中部,是洋壳裂开,深部物质上涌的场所。

    海底地形的基本格架受海底扩张和板块构造控制。内力作用对地形,尤其是深海地形的发育起着决定作用,因此深海底的大地形主要是构造地形和火山地形,外力作用也有影响,但与陆地相比要弱得多。

    海底地形的调查主要靠海底测深及侧扫声呐。应用现代高精度的声波测深技术和定位技术,已能查明海底的微地形。海底地形是研究海底构造的钥匙,对航海、军事及海底工程均有重要的现实意义。

    海底沉积物的类型、形成作用时空分布和大洋演化历史也是海洋地质学研究的主要内容之一。海底的大部分都覆盖着沉积物。主要来源有陆源碎屑、海洋生物骨骸及海水本身的化学和生物化学过程的产物,也有来自火山和宇宙的组分。

    海底沉积物的年代是研究沉积史的基础。常用的测年方法有相对年代学方法和绝对年代学方法,前者有古生物法、古地磁法、稳定同位素地层学法,后者有各种放射性同位素测年法。现在已经建立起海底沉积物的地层系统,研究海底沉积地层的划分、对比,是大洋地层学的任务。

    大洋构造的演化历史还是一个尚待探索的问题。现在多趋向于用海底扩张和板块构造模式来解释。洋底构造的研究对解决地壳起源、演化等地质学根本问题关系极大,与海底成矿作用也有密切关系。研究洋底岩石的组成、产状、分布和成因,是深海钻探技术发展起来后蓬勃兴起的一个研究领域。

    洋壳岩石主要是地幔岩浆活动的产物,也是许多海底矿产的物源,与成矿的关系十分密切。它们在时间空间上的变化,记录了洋壳形成和演化的历史,是当前深海钻探中引人注目的一个研究领域。

    海底矿产资源的重要性正与日俱增。在滨岸带,由陆源有用矿物富集形成的砂矿床,已被广泛利用。在近岸浅水区,砂和卵石作为建筑材料,也已大力开发。在大陆架,丰富的油气资源已进入大规模工业开发阶段,产量已达全球石油总产量的1/4,大陆坡和大陆隆是潜在的油气资源基地。深海锰结核储量很大,富含锰、铁、铜、镍、钻、铅等多种有用元素,在诸大洋均有分布,尤以太平洋为最多。多金属泥及块状硫化物矿床的研究正在深入。其他如磷酸盐、海绿石等也有经济价值。

    海底资源的调查和开发试验将加紧进行。海底石油在人类能源结构中的比例将继续增加。一个综合开发海底资源的时代已为期不远。成矿作用的研究将出现一个勃兴的局面。大规模的国际合作将进一步促进海洋地质学的高速发展。
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:27 PM | 显示全部楼层

火 山 地 质 学

火山地质学是研究地球历史上由火山作用形成的地质体的地质学分支学科。它与火山学关系密切但又有所区别。

    火山学主要是研究现代火山现象及各类火山活动的特征、活动的规律、火山活动的产物、火山活动的成因与机制、形成火山活动的地质构造背景及其演化历史、空间分布规律、与成矿作用的关系以及火山爆发预报等。火山地质学则是运用地质学和火山学的原理和方法,研究地球历史上早已形成的古火山岩及有关地质现象。



    火山地质学的研究内容广泛。主要有火山喷发物、火山岩地层、火山地质构造、火山矿产、宇宙火山活动等方面。

    火山喷发产物主要有松散的火山碎屑物以及固结成岩的火山碎屑岩,熔浆凝固形成的熔岩。研究这些产物的化学成分,矿物成分,形成的温压条件,结构构造,次生变化,并进一步研究火山岩浆的起源和演化规律。

    火山岩多半喷出地表,常与沉积岩共生,构成火山-沉积岩系,形成地层的一部分。根据火山岩中的沉积夹层内的生物化石和对火山岩进行同位素年代测定,可以了解火山岩地层特征及其形成的年代,并建立火山岩地层层序及地层单位。

    火山喷出的产物,除大部分堆积在地表外,也有部分形成于地表之浅部,构成潜火山岩体。在火山口附近堆积的熔岩和火山碎屑物,形成各种形态的火山锥。包括火山锥、火山通道及其附近的潜火山岩体和有关矿体,统称为火山机构。研究火山机构的特征以及控制火山喷发的构造体系,可以进一步了解火山活动的规律和板块构造的关系。

    火山活动常常与各种矿产有关。在各个地质时期的火山岩地层和火山机构中,常常伴生有各种金属和非金属矿床。研究这些矿床和各种火山岩之间的赋有关系和赋存形式,了解火山作用的成矿规律,并提出各种矿床的找矿标志。

    目前已了解,除地球历史上有过火山活动外,宇宙其他某些天体,历史上也有火山活动及其形成的产物和痕迹。近年来随着宇宙探索的迅速进展,利用宇宙飞行器研究月球和其他行星(如木星、金星等)及其卫星上的火山活动产物,已初步形成宇宙地质学的一个重要组成部分。




    火山地质学研究主要通过野外和室内工作进行。野外考察工作主要是弄清火山地质体的分布范围、规模、分布特征,并系统观察和采集各种火山物质及火山地质体的样品。室内工作主要是进行各种样品处理和分析。主要有岩相分析、化学分析、X光分析、电镜扫描、电子探针分析等,着重搞清火山物质的组成及其特征;稀土微量元素及同位素的研究分析,着重搞清火山物质形成的机制及火山物质来源、年代等。

    火山地质体的形成与火山作用关系密切,而研究火山地质体又直接应用地质学的方法,因此与火山学和地质学中有关的地层学、构造地质学、岩石学、矿物学、矿床地质学都有十分密切的关系。

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:28 PM | 显示全部楼层

石 油 地 质 学

石油地质学是研究石油和天然气在地壳中生成、运移和聚集规律的学科,是石油和天然气地质学的简称。

    石油是流体,与固体矿产相比,有其独特的生成和聚集规律。石油聚集的地方并不是生成的地方,石油在生成后,必须通过运移才能聚集在有利的圈闭中。大量的勘探和开采实践,积累了很多有关油气生成、运移和聚集规律的知识,逐渐形成这门学科。

    在美国和日本等国,石油地质学的内涵更广,除研究石油和天然气成因、油气藏的形成和油气在地壳中的分布规律,以及从生成、运移到富集成为油气藏的基本原理外,还包括油气田地质学、调查和勘探油气的各种地质学、地球物理学和地球化学的原理和方法,以及油气田开发的地质学原理和工艺技术等内容。

    18世纪中期,人们就曾经在油气苗位置上或其附近凿井,发现在一些背斜脊部有油渗出。背斜理论是加拿大地质学家亨特于1861年提出的。背斜理论一直为地质学家所遵循,指导着勘探的决策。特别是1920年地震反射法成功地应用于地下构造的制图,更加强了应用背斜理论寻找石油的信心。

    20世纪30年代,在美国发现了巨大的东得克萨斯地层油藏之后,地质学家认识到不能简单地只靠背斜理论找油。为寻找新油田,除了应用构造制图外,还必须广泛地采用地层学方法。因此,在石油地质理论中引入了礁、不整合、逆倾斜的尖灭、岩相制图、枢纽线、三角、洲沉积等与地层圈闭有关的概念。

    在19世纪初期,地质学家根据野外观察认为,石油起源于沥青质页岩,并被运移到砂岩中。在无机成因说;与有机成因说的长期激烈争论中,有机说者提供了很多重要证据,并且不断地对一些论点加以修正、补充和完善。1943年,怀特莫尔等根据从海藻中分离出含有19~34碳原子的一系列烃类的事实,指出海洋有机体一年所提供的6000万桶烃类,就足够形成在沉积岩中发现的总烃量。

    1952年,史密斯通过对现代海洋沉积物中烃的研究,进一步完善了这种生油理论。他指出近代海洋沉积物中存在游离烃类,并在成岩早期阶段随着深度加大,烃含量急剧增加,非烃化合物含量显著减少。1963年,埃布尔森提出,石油是沉积物的干酪根在成岩过程的晚期经过热解生成的。干酪根成油说已成为石油生成的现代最重要的理论。

    马格拉除了强调压实作用为初次运移的主要动力外,还提供了粘上脱水异常压力和石油运移等方面的资料。此外,斯纳尔斯基指出,微裂缝对石油从不渗透油源岩中排出有重要的作用。蒂索、佩列特和赫德伯格等还认为,由于液态或气态烃类数量不断增加,生油层内压力增加,直到压力增至大于岩石强度时,则岩石产生微裂缝,烃类气体排出,随着地层内压力逐渐降低,使微裂缝闭合。随着烃类的不断增加,地层内压力加大,岩石又产生微裂缝,又有烃类排出,如此循环往复,就使烃类断断续续地排出。

    1975年,蒂索等企图根据石油生成和运移的新理论采用盆地分析方法,确定盆地的石油远景和最有利的石油聚集带。70年代以来,许多石油地质学家和地球化学家,根据盆地类型、沉降史、沉积史、干酪根类型及其成熟度,建立石油生成模型,以便在空间和时间上定量地确定每一层油源岩的生烃潜力。

    1975年蒂索等首次介绍了石油生成与地质时间呈函数关系的模型,即石油生成模型。1983年,迪朗还基于达西定律和相对渗透率概念,描述了二维二相单元数学运移模型。该模型提供了埋藏过程中沉积物孔隙的石油饱和度史和流体压力史,指出了石油运移的时间及油藏形成的可能部位。尽管这些研究工作还不成熟,但石油地质学家们的努力,使得石油地质理论已开始定量化和模式化。

    石油地质学主要研究石油及其伴生物天然气、固体沥青的化学组成、物理性质和分类;石油成因与生油岩标志;储集层、盖层及生储盖组合;油气运移,包括油气初次运移和油气二次运移;圈闭和油气藏类型;油气藏的形成和保存条件。

    油气藏的形成过程就是在各种因素的作用下,油气从分散到集中的转化过程。能否有丰富的油气聚集,并且被保存下来,主要取决于是否具备生油层、储集层、盖层、运移、圈闭和保存6项条件。其中最重要的两个条件是充足的油气来源和有效的圈闭。

    石油地质学与流体力学、有机地球化学、地球物理学、构造地质学、沉积岩石学和岩相古地理学等有密切的关系。例如,这些学科的发展,以及色谱、色谱-质谱、红外光谱、电子显微镜和同位素分析等技术的广泛采用,为解决石油成因问题创造了良好的基础。

    一些重要的油气藏与河道砂、三角洲砂、沉积砂和礁密切相关。而这些类型的砂体和礁的分布受沉积体系的控制,因此,只有通过研究沉积岩石学和岩相古地理才能确定储集岩分布的有利地带。

    石油地质学与构造地质学关系十分密切。油气的运移和聚集受盆地区域构造和局部构造条件的控制,要想成功地找到与背斜构造、断裂构造,以及不整合面有关的油气田和油气聚集带,就必须深入掌握有关构造地质学的知识。

   

 

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:28 PM | 显示全部楼层

煤 地 质 学

煤地质学是以地质理论为基础,研究煤、煤层、含煤岩系、煤盆地以及与煤共生的其他矿产(油页岩、煤成气等)的物质成分、成因、性质及其分布规律的学科。也称煤田地质学。是地质学中形成较早的分支学科。煤地质学与大地构造学、构造地质学、沉积学、矿床学、地球物理探矿和石油地质学等密切相关。

    煤是重要能源之一,也是炼焦工业和冶金工业的重要原料。炼焦过程中可获得焦油、煤气和氨水等副产品,从中还可制取化学工业原料苯、甲苯、酚和萘等。这些化学工业原料是染料、药品、肥料、炸药、人造纤维等几百种产品的重要原料。20世纪70年代初期石油危机出现后,煤的液化和气化燃料又使煤作为洁净燃料成为能源的组成部分。煤或煤灰中还可提取有益的金属元素如锗、镓、钒、金、铀等。煤在国民经济中不仅是重要的能源,也是多种工业的重要原料。

    中国是世界上最早发现和利用煤的国家。辽宁新乐古文化遗址(6000多年前)中,就发现过煤制工艺品。《山海经》中称煤为“石涅”,并载有几处煤产地。中国现已发现河南巩县西汉时用煤饼炼铁的遗迹。魏晋时称煤为“石墨”或“石炭”,晋《水经注》中有“石墨可书,又燃之难烬,亦谓之石炭”,说明当时对煤的染手、耐烧等特性已有了认识。

    “煤”和“煤炭”两词始见于《本草纲目》。在《天工开物》一书中,记述了煤矿开采的通风排气、顶板支护等,还对煤的块度进行分类,并对产地作了记述,如“明煤产北,碎煤产南”;关于煤的性质与用途分类则有: “炎(焰)高者曰饭炭,用于炊烹;炎平者曰铁炭,用于冶铁”;还有“凡取煤经久者,从土面能辨有无之色,然后掘挖深至五丈许方始得煤”的记载。

    希腊和古罗马也是用煤较早的国家,希腊学者泰奥弗拉斯托斯在约公元前300年所著《石史》中载有煤的性质和产地;古罗马大约在2000年前开始用煤加热。

    18世纪后半期,蒸气机的应用使煤的需求量大增。19世纪中期,欧洲许多国家成立地质机构,开办矿业学校,开展地质调查,采煤工业迅速发展。此后,炼焦工业兴起,气化工业诞生。1870年左右首次在显微镜下发现煤是从植物转变而来,证明了煤的有机成因说。

    19世纪末期到20世纪初期,电力工业、冶金工业、有机合成工业蓬勃发展,用煤量大幅度增加。为了适应煤炭生产的需要,大力开展大煤田的地质调查研究,这一时期对煤系地层、构造、煤的成因和性质等方面,有较多的著述,如怀特和蒂森的《煤的起源》、蒂森的《古生代烟煤的构造》等。煤地质学的研究和发展,使其从矿床学和采矿学中分了出来,成为独立的学科。

    20世纪30年代以后,煤地质学得到比较系统的发展,并进一步分化形成几个分支学科,如煤岩学和煤化学在研究煤的成因、成分、物理化学性质、工艺性质的同时,引进其他有关学科进行综合性研究,强调煤质、煤层、含煤岩系的变化和分布规律与地质因素之间的关系。

    用岩石学方法研究煤的物理组成和类型的学科为煤岩学;用化学方法研究煤的元素组成和工艺性质的学科为煤化学。

    成煤作用研究泥炭化作用阶段、成岩作用阶段和变质作用阶段的转变因素、条件、过程和内容,找出煤的成分和性质复杂多样的原因,认识煤质的变化和分布规律,进行煤质评价和预测。

    聚煤盆地分析以盆地为整体,从演化发展的观点进行古环境和古构造相结合的分析,并进行区域大地构造、古气候、海水进退以及盆地在古大陆的位置等背景分析。煤的区域分布规律则从植物演化、气候条件、古地理环境、古构造学等方面对较大区域直至全球的煤聚集规律进行研究。

    已知有些含煤岩系产出石油、天然气,有的石油建造发育有煤层,因而从成因上研究煤、石油、天然气的共生关系,具有理论和实际意义。煤作为油气源岩已经成为煤岩学和油气勘探工作的一个重要研究课题。与煤相邻的矿产主要指区域岩浆热变质煤的附近有可能发育金属矿产。研究它们之间的关联,有助于更好地进行综合找矿勘探,提高矿产勘探效率,更有效地寻找、开发有关矿产。

    1973年开始出现的石油危机,迫使人们寻找替代石油的能源,因而大力开发煤炭资源,已成为一些国家能源政策的重要组成部分。大力勘探煤炭资源,提高煤的利用效益,发展煤的热解液化、气化、合成等煤的综合利用,是世界解决能源问题的共同趋势。

    煤和石油、天然气在形成上存在着密切的成因联系,因此,煤地质学和石油地质学的研究有相互渗透的趋势。由于寻找掩盖区煤田的任务加重,因此地球物理勘探的应用也日益重要。例如,应用反射地震成果来解释地下煤层的赋存部位和展布,已取得成功等。煤和黑色页岩中锗、镓、钒、金等元素富集的研究,已成了煤和黑色页岩有机地球化学的研究方向。

    20世纪70年代以来,把沉积学的进展应用于煤地质学,在聚煤盆地分析、成煤沉积环境模式的建立和煤田煤质预测等方面都取得了成效,煤沉积学和煤盆地分析研究的重要性日益显著。
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:29 PM | 显示全部楼层

区 域 地 质 学

区域地质学是地质学的一个综合性分支学科。其主要任务是在区域地层、岩石、构造、地球物理、地球化学研究基础上,运用地质学的理论和方法,研究和阐明指定地区的地质构造及其演化的总体特征,探讨各种地质作用之间的内在联系,为矿产资源勘查、成矿规律分析、地质环境评价及有关经济建设提供综合性基础地质资料。

    区域地质学的研究可以按构造域、地台区、褶皱系等不同级别的构造单元来进行;也可以按山系、平原、高原、盆地等地理单元或图幅来进行;还可以按洲、国家、省(州)等行政区划为单位来进行。

    区域地质学是伴随着区域地质调查从西北欧发展起来的。早期主要是研究基岩裸露的山区,如苏格兰高地、阿尔卑斯山、阿巴拉契亚山等,随着地球物理学的发展,逐渐由山区扩展到平原、海洋和极地地区。

    在中国,区域地质学的发展是从晚清时期开始的,主要进行了个别路线地质调查和局部地区地质研究。美国人庞佩利于1862~1865年在华北进行了地质调查;德国人李希霍芬于19世纪60、70年代两次来中国进行地质考察,著《中国》一书,并附地质图。1903年周树人(鲁迅)著《中国地质略论》,1910年邝荣光出版《直隶省地质图》,同年章鸿钊撰写《中国杭州府邻区地质》等。并在矿产资源调查和地质填图基础上,出版了一系列区域地质专著和地质图件,为中国区域地质研究奠定了基础。

    区域地质学研究内容几乎涉及地质学的各个分支学科,比如在区域地层学、历史地质学方面,主要研究不同地史阶段各地区地层系列,沉积岩系建造性质,地层界面性质及古地理变化,重塑地史时期自然地理环境变迁,恢复沉积史;在区域岩石学方面,主要研究区域火成岩、变质岩的类型及分布特征,岩浆活动、变质作用的过程、性质及其与构造运动的关系;在区域构造方面,研究构造方向、形态、类型及其组合特点,力学边界条件、构造运动过程时期和性质,大陆壳的形成过程及深部构造特征,划分构造单元,研究各种构造成因机制;在区域成矿规律方面,主要研究各种矿产分布特点及成矿地质背景,即矿产形成与区域地层、岩石、构造及各种地质作用的时空联系。

    各种比例尺的地质调查、各项地质专题研究和综合地质编图,是区域地质学研究的基础和基本途径,其基本方法是野外地质观测研究和实验研究及综合分析。

    区域地质学通过剖面和地质路线观察研究,搜集地层、岩石、构造地貌等基本资料,研究各种地质遗迹、地质作用及其相互关系,采集各项标本、样品。

    另外除应用地面地球物理勘探研究、圈定地质界线,研究构造和确定地质体产状外,主要还通过航磁、地震、重力、遥感等探测资料的解译,固定各类地质界线,分析区域构造及深部构造特征;应用古地磁方法研究地史时期各陆块会聚、离散过程;应用区域震源机制分析研究现代应力场及活动构造特点;应用同位素测年方法鉴别地层、岩浆岩、变质作用及构造运动的时代和期序。

    由于区域地质学主要研究一个地区地质构造的总体特征及其发展演化规律,因此与地层学、古生物学、岩石学、构造地质学的关系密切,这些学科研究的深度和广度往往制约着区域地质学的研究水平。

    地壳构造和地壳运动既是构造地质学研究的核心内容,又是区域地质学研究的重要课题。一个区域地质特征及其演化历史的研究成果,常被视为构造地质学研论为指导。因此,区域地质学与构造地质学的关系尤为密切。许多地区,特别是平原、沙漠、海洋等基岩隐伏地区的区域地质研究以及深部地质构造的研究,常常需要借助于地球物理学与地球化学。

    对于现代区域地质学来说,地质与地球物理、地球化学的研究相结合,是十分必要的。地质数据的统计分析,地质过程的模拟,地质制图自动化等,都需要应用计算机科学和数理统计学的理论和方法。
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:31 PM | 显示全部楼层

宇 宙 地 质 学

宇宙地质学是研究太阳系各天体的物质组成、地质构造、内部结构和地质演化历史的地质学分支学科,又称空间地质学。


    20世纪50年代前,人类只能用望远镜观测太阳系天体的地形特征,通过天体的反射与吸收光谱测定,推测它们表面的成分。60年代以来,阿波罗月球探测计划等的实施和一系列行星探测器对太阳系内行星的精细研究,对内行星和卫星的磁场、大气、水体、地貌、地形、表土成分、地层、构造、热流、内部结构及其地质演化历史的探测,积累了大量的观测资料,编制了各行星的地形图、地质图和构造图,提出了各行星的地质消化规律的共性与特性,使宇宙地质学获得迅速发展。20世纪90年代以来,对太阳系外行星及其卫星的探测,大大扩展和深化了宇宙地质学的研究领域。

    对于太阳系中的行星的地质研究,人们主要以地球为基础,在太阳系的空间尺度和近50亿年的时间尺度内,比较各行星的物质组成、大气、水体、地形、构造、火山活动、内部结构、地质演化与热历史,研究各行星演化的共性和特性,深入论证地球整体的演化规律。

    而对于太阳系的行星的卫星主要是通过对月球的地形、地层,火山恬动、构造和演化历史的研究,类比其它小质量天体地质的演化,并为太阳系巨行星的一系列卫星的地质演化对比研究提供科学依据。

    小行星是主要分布在火星与木星之间的众多小天体,它们代表着太阳星云凝聚物演化为行星的中间阶段的产物。小行星反照率及其反射光谱的测定,为研究各类陨石的母体和起源提供了新的论证。

    陨石是自然降落的天体物质。有史以来人类收有2200次降落的陨石,南极洲发现了8000多块陨石。陨石携带有丰富的有关太阳系的平均化学成分、太阳系的形成和演化、有机质的起源、太阳系空间的环境。重返大气层过程和冲击变质作用等信息。陨石学一直是宇宙地质学研究的主要领域。

    在月岩和陨石中发现有140多种矿物,其中地球上未发现过的矿物为39种。研究天体的矿,物成分、矿物组合及矿物形成的物理化学过程,探讨太阳星云凝聚的过程、天体凝固的物理化学条件、天体内部的分异与核、幔、壳圈层结构的形成及天体表面的物理化学风化过程。

    另外宇宙地质学还采用宇宙学方法与核物理技术,如天然放射性核素的衰变、重核自发裂变及核反应的原理与技术。制定与计算宇宙年龄、银河系年龄、元素年龄、天体凝聚年龄、天体固化年龄、天体之间形成的间隔年龄、天体内部热变质年龄、气体保留年龄、核径迹保留年龄、天体在太阳系空间运行的年龄(宇宙线暴露年龄)及天体的落地年龄。研究宇宙中重大事件的年龄和宇宙演化的时间序列。

    宇宙地质学的研究手段主要通过装备有各种探测仪器的空间探测器,观测天体的大气组成、温度、气压、风速、垂直结构、太阳风成分、水体的成分和分布、表面的地形与分区、表土的成分和特征、表面岩石的成分,类型和分布、地层序列、构造体系与内部的壳层结构等。

    其次,通过载人或无人空间探测器在天体表面着陆,直接测定土壤、岩石的矿物成分、化学组成和物理性质;内部热流和地震波传播速度等。空间探测器在天体表面自动取样或宇航员直接取样,带回地面实验室作精细研究。

    另外通过在地球表面对自然降落的天体物质(陨石、宇宙尘、南极洲陨石中发现的月球岩石和可能的火星岩石)进行矿物学、岩石学、化学成分、有机组分、同位素组成、同位素测年和物理力学性质等方面的研究。

    类地行星的大量探测资料有待于理性的整理与综合,并从更大的时空尺度及其相互联系发展中,认识类地行星的地质演化规律和地球整体的形成发展特征;太阳系巨行星及其卫星的探测,将为整个太阳系各天体的地质构造特征与地质演化规律的研究,开拓广阔的新领域。
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:33 PM | 显示全部楼层

地 史 学

地史学是研究地球发展历史及其规律性的地质学重要分支学科,又称为历史地质学。

    在20世纪50年代以前,地史学主要是建立地层系统、确立地质时代,研究范围主要限于大陆部分。从60年代以来,地史学的研究范围扩展到大洋海底和地壳深部,研究方法也由涉及更多学科而有较大的改进。地史学的研究内容,主要包括沉积发育史、生物演化史和构造运动中。对地史学的研究可为区域地质调查、矿产普查勘探等工作提供理论依据。

    在18世纪中期,德国的莱曼和意大利的阿尔杜伊诺将成层岩石分为原始层、第二层和第三层等。1787年,德国地质矿物学家维尔纳将地层归纳为原始层、过渡层、覆盖层和冲积层,大致分别相当于前寒武系、古生界、中生界和新生界。

    19世纪20~80年代,法国的布龙尼亚,英国的莫企逊、科尼比尔、塞奇威克和莱伊尔相继把古生代和中生代划分为纪,把第三纪划分为世。美国的丹纳和埃蒙斯又分别提出了太古代和元古代。大体上形成了较完整的地质时代表,与现代使用的相似。

    从19世纪初,英国的史密斯提出根据化石划分地层的见解以来,人们对各地质时代的生物面貌逐渐有所了解。地质时代中代一级的命名古生代、中生代、新生代,就是根据生物界的总体面貌而言。

    到20世纪初,英国的霍姆斯等利用同位素衰变过程的特有稳定性,测定含放射性元素的矿物和岩石的形成年龄,从而确定地层形成年代,使地质时代表有了纪年数据。20世纪50年代以前,海水进退和海陆变化的研究不仅只限于大陆地区,而且对海陆分布基本上也局限于固定论的认识。60年代,古地磁的研究和板块学说的提出,使地史学的研究扩展到海洋和地壳深部。

    地史学主要研究地壳表层岩石的形成年代、生物群的特征,以及地层划分与对比的地层学和地质年代学。

    生物演化是古生物学研究的基本内容,地史中的生物演化着重于生物界在地球历史各阶段的盛衰和该替,特别是各生物门类自低级至高级逐步出现和演变衰亡的过程。当然,古生态的研究可以协助确定沉积环境,生物地层的研究一直是确定时代、进行对比的主要手段。自从20世纪30年代霍姆斯等测定地层岩石矿物的生成年龄以来,地质年龄测定与生物地层划分相结合,使地质年代表有了具体的年龄值。

    古地理学是研究地层的形成环境及不同环境的空间分布特征的学科。整个地层学系统就是地球历史上沉积作用的物质记录;沉积物的性质反映了物质来源、沉积作用和形成环境的特征;沉积物的分布则反映了剥蚀区和沉积区的轮廓以及海陆分布的特征。把不同时期地层沉积和分布轮廓进行比较,就可得出古地理格局不断发展演变的概念,所以沉积发育史也就是古地理的发展史。

    根据地层的沉积类型、物质组分接触关系以及岩浆活动和构造变动等的历史大地构造学,推断其形成时的构造条件和这些构造条件在地质历史上的时空演变。沉积特征和古地理轮廓的变化实质上是地壳各区段构造运动的反映。

    构造运动一直是地史研究的重要内容。18世纪末,赫顿发现了地层间的不整合现象,并以造山或构造运动予以解释。从那时以来,人们通过地层的不整合关系认识了许多造山运动期和与之相伴生的岩浆侵入及变质作用。根据地层组成的组分和厚度不同,根据构造运动和岩浆恬动的程度不同,人们逐步建立了构造活动程度的概念。

    大陆地区可分出构造上的活动区和稳定区,即传统的地槽区和地台区。两种地区的构造发展特征及其相互关系的研究,就是构造运动史。根据各区构造运动史的不同,将地壳各区殴分为不同的构造单元,分出不同的构造阶段,就是历史大地构造分析。历史大地构造分析日益成为地史学研究的重要内容。

    现代地史学的研究范围在空间上扩展到大洋区和南北极区;在时间上追溯到40亿年前的地质史前期;在深度上深入到上地幔,以至核幔关系。地史学逐步扩展为整个地球历史的学科。

    地史学的研究手段和方法要涉及到地质科学的许多分支学科,以至地球物理学的有关学科。在思想上地质演化的突变观或新灾变观,以及由此派生的阶段论概念日益受到重视。地史学将向着一个多学科互相渗透的、更具有综合性的学科分支发展。
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 2-12-2006 10:35 PM | 显示全部楼层

古 生 物 学

古生物学是研究地史时期生物发生、发展、分类、分布、进化等规律的科学。研究对象是化石。通过研究,可阐明生物界生物的发展历史,确定地层形成的先后顺序,了解地壳发展的历史,推断地质史上的水陆分布和气候变迁,以及指导对矿产资源的普查勘探和开发利用。

    在公元前5~前3世纪中国战国时代的《山海经》中,已有关于脊椎动物化石的记载。公元5世纪,东晋沈怀远的《南越志》中有关于鱼类化石的记载。唐代颜真卿从贝壳化石联系到沧海桑田,韦应物正确地解释了琥珀中昆虫化石的形成过程。宋代沈括在《梦溪笔谈》中除对化石作了科学说明外,还论证了古地理、古气候的变迁问题。

    意大利达·芬奇在地层中发现了海生贝壳化石,认为这些化石是过去生活在海滨的生物遗骸。18世纪,瑞典生物学家林奈创立了“双名法”,并建立了生物的系统分类,但他坚持物种不变论。19世纪,自然科学随着工业发展而迅速发展起来,法国生物学家拉马克认为,物种不是不变的,而是逐渐进化的,并指出环境变动是物种进化的原因。他首次把动物界分为无脊椎动物和脊椎动物,并提出了“用进废退”学说。



    法国的动物学家居维叶著有12卷古脊椎动物学。他对比较解剖学贡献颇大,提出了“器官相关律”。与居维叶几乎同时,英国史密期创立了化石顺序律。生物按顺序出现的事实为生物进化和地层对比提供了依据。布龙尼亚继承发展了史密斯的工作,提出古植物的分类方案和研究原则,被认为是古植物学创始人。

    1859年,英国达尔文的《物种起源》问世,他认为古代生物与现代生物之间有共同的祖先,现代生物是古代生物在自然选择法则下逐渐进化的产物。随后,德国古生物学家齐特尔按分类系统著有一部四卷本古生物学这是一部全面而详尽的经典著作。1972年,美国自然博物馆的埃尔德雷奇和哈佛大学的古尔德创立了生物进化的“间断平衡论”,认为新种是由其祖先种分支迅速产生的。这一理论的提出,丰富和证实了生物进化论。

    为了便于研究,古生物学与生物学一样,必须建立一个反映生物界的亲缘关系和进化发展的自然分类系统。根据生物之间异同程度和亲缘关系,划分为等级不同的若干类群或单位。物种是古、今生物分类的基本单位,一般从低级的原核生物到高级的真核生物,共包括五个界:原核生物界、原生生物界、真菌界、植物界和动物界。古生物学与生物学不同,有一些现已绝灭的疑难化石,分类位置不易确定。进行古生物系统分类研究的学科,称为系统古生物学。

    生物进化的基本概念和理论,包括物种形成的方式和速度的研究。生物进化的趋向,包括分化进化和复化进化、进化的不可逆性、生物绝灭等问题。生物进化的规律和历史进程,包括从生命的起源到人类的出现。研究古代生物进化的理论和规律的学科称为进化古生物学。根据化石的纵向分布和演化序列,建立生物地层层序的学科称为生物地层学。



    生物与其生活环境是相互作用、相互制约、密切相关的,各种生物都只能适应一定的环境,如水生或陆生。运用现代海洋环境和大陆环境的特点及其对生物控制的知识,推断地质时期生物的生活习性与生活环境之间的关系,是古生态学的内容。从生物与环境的关系来讲,一部生物发展史就是不断适应,扩展生存空间的历史过程。

    借鉴现代生物地理学的基本理论和方法研究地质时期由于环境控制因素,如隔离、温度、纬度的变化所导致的生物分布格局及其演变过程,是古生物地理学的主要内容。当前,古生物地理学研究的趋向是以生物分类单位的分布为基础,结合生态环境因素划分古生物区系,并与生物进化史和地质发展史联系起来,分析古生物区系形成的历史过程。

    古生物学可分为古植物学和古动物学。古植物学含以古植物繁殖器官孢子、花粉为研究对象的孢粉学。古动物学又可分为古无脊椎动物学和古脊椎动物学,从古脊椎动物学中又分出以化石人类(骨骸和遗迹)为研究对象的古人类学。

    应用光学显微镜对古生物中微小化石,如放射虫、有孔虫、几丁虫、层孔虫、苔藓虫、介形虫等,以及某些大化石的微小器官,如海绵骨针等微体化石,进行观察研究的,称为微体古生物学。由于扫描电子显微镜的应用,正在兴起以10微米以下的海洋超微浮游生物化石为研究对象的超微古生物学。由于古生物学与数学、化学、物理学等之间的交又滓透,形成古生物化学、分子古生物学和系统古生物学等新学科。

    古生物学是生物学与地质学密切结合而形成的一门科学,反过来又推动生物学和地质学的发展。由于生物化石是地质时期生物界发生、发展的真实纪录,因而化石是生物进化从少到多,从简单到复杂,从低级到高级的历史证据。通过对生物进化的阶段性和不可逆性的研究,建立地层系统和相对地质年代。因此,生物化石是划分和对比地层的重要依据。此外,古生物学研究还对古地理和古气候的重塑提供依据。

    古生物学是一切地质工作的基础,根据生物化石纵向分布,通过地层对比,编制各种地质图件,以指导对矿产资源特别是能源、地下水等资源的开发利用。

    古生物学研究,在理论方面已涉及越来越多的科学领域,与更多的相关学科交叉渗透,形成新的分支学科。如与板块构造的相互联系,因为板块的分离和聚合必然导致全球环境的重大变化,从而影响生物分布格局和进化或绝灭的进程。又如与生物学的密切结合,探讨生物进化的方式和速度等问题,丰富和充实了新的分支学科。



source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:37 PM | 显示全部楼层

古 生 态 学

古生态学是研究地史时期生物之间,以及生物与其生活环境之间的相互关系的古生物学分支学科。古生态学专门研究古代生物的生活习性和生活环境,它与沉积学、古地理学、古气候学等密切相关。


    根据研究的对象和范围,古生态学划分为个体古生态学和群体古生态学(或称综合古生态学)。前者研究个别属种古生物的生态,后者研究一段地史时期的全部化石群落的古生态系统。个体古生态学是群体古生态学研究的基础。古生态学对研究古生物分类、地层划分、古地理变迁、沉积矿床的形成条件和分布规律等,具有重要意义。

    1928年,里赫捷尔根据均变学说的原理,研究现代海洋生物及其环境,并试图解释古生物学的问题,这称为现实古生物学派。该学派代表作是《海洋环境的生态学和古生态学》,它是对北海潮坪环境生态研究的总结,对于研究浅海地区海洋古生态起了很大的推动作用。

    在古生态研究中,根据生物的器官构造、形态和机能必然与其生活环境相适应的自然选择法则,来阐明已灭绝生物的行为及习性的方法称为形态功能分析。与此相关,1970年赛拉赫提出研究生物的形态建造,即系统发生的历史因素(即生殖作用的基因)、形态功能适应、生物化学作用是生物的形态及其骨骼构造形成的基本决定因素。

    埋藏学是恢复古环境的基础,在前苏联叶夫列莫夫创立化石埋藏学之前,魏格尔特称之为生物层积学。埋藏学专门研究化石的形成过程,要分析和恢复原来的生物群落及其生活环境,必需首先判断化石群是生活在原地的群落,还是经过外力,如水力、风力、冰川等搬运的异地埋藏群。原地生活的群落,如碓体、叠层石或其他未经搬运的生物化石等,可以提供解释古生态学直接的证据,而异地埋藏可供判断古地理环境和沉积条件。

    20世纪50~70年代,苏联古生态学家盖克尔创立了岩相-古生态比较分析法。他强调古生态学的研究始终要与岩相分析相结合,其理论基础建立在有机界的生物和无机界的沉积环境是相互联系的统一体。每种岩相都有它自己特殊的化石群,当岩相在空间上或时期上变化时,各相带所含的生物群相应地也必定发生有规律的递变。

    古生物学家常把在同一产地发现的化石群称为化石组合。如果它们是原地埋藏,既原来是生活在一起的,就称为化石群落。以化石群落为主要研究对象的学科称为群落古生态学,它主要研究生物之间不同程度的依赖关系,如捕食、寄生、共栖、互利、偏利等关系,研究群落成员的丰度、分异度、优势度,生物灭绝同新生和外界环境因子的关系;研究化石群落的地质地理分布。群落生态学研究的最终目的是为解决群落在地史中的进化格局。

    1954年德国学者申德沃尔夫首先提出生态地层学。生态地层学是应用生态学和古生态学的原理和方法来提高地层对比的精确性,其基本步骤是:首先在所测的剖面上精心收集化石;基于不同门类化石的演化历史,把剖面详细分带,评价各门类生物的演化;研究底栖群落的生物地理分布格局;同时考虑岩石组成特征研究盆地的发展历史,只有在尽可能多的群落组在空间上相互重叠,在时间上相连续时,地层对比的精度才能提高。

    遗迹不仅代表生物的各种行为和习性,而且代表它们是在某种沉积条件和一定的环境中形成。遗迹化石能够解释古代生物群落的丰度和分异度,水体的气体环境、温度和盐分,基底的性质以及海洋的深度。

    遗迹化石可以阐明沉积相,相序列的变化和恢复沉积环境的历史。遗迹化石可以为古生物学提供无化石记录的软躯体生物的信息,底栖动物活动的格局。遗迹化石对地层学可以提供划分标志,对古生代不含化石的砂岩系、前寒武纪地层和浊积岩系等特别有用。遗迹化石对沉积学的贡献是解释生物对沉积物的改造和建造作用。

    数理化知识在古生态学领域的应用和计算机技术的发展,产生了定量古生态学。地球化学在古生态方面得到广泛应用。利用氧和碳等稳定同位素,采用精密的质谱仪,可测定海洋古温度和古盐分。对生物骨骼中的碳酸钙与环境的关系和生物骨骼中的微量元素进行了研究。随着古生态学研究的不断深入,资料、数据不断地累积,古生态学中定量的方法日渐重要。

    陆相古生态学是近几年受到重视的新领域。它包括淡水环境和陆地环境古生态两个方面。淡水古生态学的重点是湖沼古生态学,因为湖泊中化石群保存完整,沉积间断干扰较少。除湖泊外,陆相古生态还包括洞穴沉积、河流沉积、黄上沉积和冰川沉积等。中国的陆相地层特别发育,同煤、石油、钾盐、硅藻矿等关系也非常密切,因此开展陆相古生态学研究具有广阔的前景和重大的意义。


Source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:38 PM | 显示全部楼层

古 地 理 学

古地理学是研究地质时期地球表面的自然地理环境,及其发展规律的地质学分支学科。

    古地理学通过对沉积物(岩)及其所含化石和其他标志的研究,用以了解当时的地表作用、生物演化、地质发展、大地构造与地球演变的关系,掌握某些沉积矿床及层控矿床的形成和分布规律。

    古地理学的主要任务是对不同地质时期古地理环境的再造。古地理学的研究与地层学、古生物学、沉积地质学、古海洋学,古气候学、大地构造学、地球化学和地球物理学等密切相关。

    古地理学形成于19世纪末20世纪初。1887年,俄国地质学家卡尔宾斯基探讨了欧俄地区的古地理环境,涉及到海陆分布以及山脉、河系、火山、气候和生物分布等,并认为海陆更替与地表升降运动有密切关系,还发表一系列古地理图。随后,德国达克的《古地理学的基础和方法》以及阿德特的《古地理学指南》二卷本问世,标志着古地理学发展的新阶段。

    20世纪20~50年代,苏联和欧美学者对沉积岩的碎屑矿,物成分、沉积构造、组构、古水流方向、沉积相、生物相和古气候等进行了研究并发表了许多著作。

    60年代,地学领域经历了空前的大变革时期,对古地理学的发展产生深远的影响。浊流和浊积岩、等深流和等深积岩的发现,使传统的机械分异理论被突破,促使人们认识到,海水的深浅以及距陆地的远近与碎屑粒度之间,并不存在必然的依存关系。

    20世纪70年代以来,古地理学结合板块构造理论对沉积作用进行研究,提供了沉积盆地的分类、沉积相、动植物群的分布,以及地球外部壳层物质迁移的一个新的概念性格局。并且从现代沉积作用的研究入手,与古老的沉积岩进行对比,建立了沉积相模式。随着地震地层学、遥感地质、同位素地球化学的发展,事件沉积学、事件地层学、层序地层学和旋回地层学的出现,促进了古地理学的发展。

    进行古地理学研究首先要确定同一地质时代的地层,只有在同一时期的时间间隔内,才有可能了解古地理环境的空间变化。原则上,划分年代地层的时间间隔越短,时间精确度就越高。传统的作法是依靠生物带化石来划分对比,以及通过识别由海平面升降周期性变化而产生的沉积层序和韵律性特征,划分对比地层而建立精确的年代地层格局和解释沉积物成因,这是新兴的层序地层学的方法。

    研究与地球轨道循环同步形成的旋回地层学,与放射性方法巨大发展同步的磁性地层学和化学地层学等新的分支学科,对提高地层时限精度都有重大的意义。

    广义的古地理环境应当包括自然地理环境、生物地理分区和古气候。自然地理环境包括大陆和海洋盆地的轮廓和分布。在大陆上要反映的古地形特点,包括剥蚀区的再造和母岩成分及分布特征的确定;河流、湖泊成因类型、古流向和分布特征的确定;风向、古气候和生物地理分区的确定。

    在海洋盆地中,首先应确定海岸线位置、海盆轮廓和性质;盆地内潮汐流、沿岸流、海浪、海流以及浊流或风暴流的水动力条件的分析;海水的含盐度、温度、深度、水介质的物理化学条件、酸碱度确定。海底地形、三角洲、海底扇的特征和分布,以及深水沉积特征和浮游生物的特征和分布的研究、古生物和古生态、生物地理分区的确定,以及古气候及其分带的研究。

    沉积相分析是古地理学研究的基本方法。沉积相是沉积物形成条件的物质表观。时间的不同,沉积相的特点和分布也不同,一定的沉积物只出现在某特定的时代,如中、晚前寒武纪的带状铁矿层;有些则出现在不止一个时代中,如黑色页岩、煤和蒸发岩。有人认为这些特定时代的相是全球性或近于全球性的。因此,它们必然记录着一些全球规模的岩石圈、生物圈、水圈和大气圈特殊的相互关系。研究这些问题,不仅能深入了解地球历史的本来面目,而且为寻拔煤、油气和有用矿床等提供依据。

    除了建立单独的相模式以外,也需要对沉积作用、沉积产物的可变性以及其他动力概念进行研究。例如,从陆源硅质碎屑到海洋碳酸盐的变化,或从一个丘状进入到平顶滩的转变。这些相序演化的研究要与隆起和沉降的地球物理模式紧密联系起来。此外,这些地球物理模式也会对沉积相序和演化的研究起促进作用。

    深海钻探和稳定同位素研究的发展,已有可能对古海洋的古环境、海洋循环和化学条件进行重建。除了利用氧同位素了解古温度外,可直接根据碳同位素了解古海洋的循环及其动力。并可根据邻近的陆绦海记录和保存在造山带的洋壳以及海洋沉积物的碎片重塑古海洋。

    研究古气候的关键是加强对古气候与沉积物沉积特征之间相互关系的认识。每一个气候变量都有大的空间变化,因为不同纬度接受的太阳能不同,大陆和海洋的热性质不同,所以海陆分布的变迁是气候变化的重要原因。海洋气候和大陆气候的差别也随着由低纬度向高纬度的过渡,气候分带表现得越来越明显。

    古纬度也是确定古气候分带的重要因素之一,当地球外壳有一次重大的变位,都会引起各个板块的相对运动,从而引起古气候带格局的重要变化。最重要的古气候标志是一些对气候敏感的沉积物类型,如碳酸盐岩、蒸发岩类、红层、铝土矿、煤、冰碛岩及古风向、古温度和某些动植物群,沉积作用是在一定的大地构造环境中进行。很多沉积盆地的几何形态、构造特征和地层格局都与大地构造的演化有密切关系。

    对沉积盆地进行分析,要充分利用地球物理、钻井和地震地层学资料,以了解地下深部隐蔽的同沉积古地形和沉积相分布的格局,覆盖于河道上及生物礁上的构造或不整合面的披盖构造等,而有利于古地理环境的重塑。其次应根据盆地类型和特征建立盆地的发育模式,进一步了解其沉积体系与大地构造的关系。很多学者认为,许多沉积(古代和现代)不是一种单纯沉积物的产物,可能是受地球运行轨道的控制,或是岩石圈、水圈、大气圈和生物圈相互作用的结果。

    沉积地质学和古地理学正向全球范围发展。由于研究对象之间的联系极为复杂,依靠一个地区。局限于一个专业,往往不能全面认识事物的本质。所以必须超越国家界限,综合多学科进行研究。
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:39 PM | 显示全部楼层

沉 积 学

沉积学是研究形成沉积地层的沉积作用、沉积过程及沉积物的地质学分支学科。沉积学是从沉积岩岩石学中的沉积作用部分发展、演化而来的,并形成了更广泛的研究内容和应用范围。它解释沉积地层的垂向和横向的关系,从多方面探讨沉积地层中构成地质记录的特征,作出成因分析,并使之上升为理论。

    沉积岩岩石学著作中历来都把对现代沉积物及其沉积作用过程的研究内容作为基本内容。1932年沃德尔提出沉积学一词,并定义为研究沉积物的科学。20世纪30~50年代特温霍费尔先后发表的《沉积作用论》和《沉积作用原理》全面、详细论述了现代沉积物的形成阶段,形成环境,以及不同介质条件下所形成的沉积物的不同特征,为沉积学奠定了基础。

    20世纪50年代以来,在石油开发中人们认识到现代沉积的研究对油气勘探至关重要。由世界各大石油公司倡导的对大型现代三角洲、河流沉积物和碳酸盐沉积物等的研究,以及对有价值的资料的出版,推动沉积学迅猛发展。

    盖洛韦和霍布迪于1983年发表的《陆源碎屑沉积体系》全面总结了基于现代沉积研究的沉积体系。此外,对海洋的调查和研究也日益普遍和深入,提出了浅海性的风暴沉积和深海性的平流沉积等开拓性的研究领域等。

    沉积学主要结合土壤学研究风化作用;结合流体力学、水文学、大气科学、化学和生物化学等研究搬运作用和沉积作用;结合矿物学、岩石学、化石岩石学等对研究各种碎屑颗粒、粘土矿物和异化颗粒的类型和成因标志,研究陆源沉积物和内源沉积物类型和成因,尤其对各种已知环境的沉积相特征分类、相模式的建立和沉积体系的研究等;结合岩石圈动力学等,研究大构造单元或大地理环境中的沉积特征,主要研究整个沉积盆地,岩石圈板块,褶皱带等的沉积特征。这项研究内容也有人称之为宏观沉积学。

    沉积学把对现代沉积研究取得的多方面的资料,特别是沉积类型和成因标志等同古代沉积进行对比,分析古代沉积地层中有无相类似的沉积岩、沉积相或相标志,以及沉积体系等;阐明其相同、相异,或有若干变化之处,以解释地质时期的演化趋势。

    自从50年代以来沉积学便由纯科学向应用科学方向转变,并得到迅速发展,应用范围也日益扩大。沉积学的研究已成为油、气勘探获得成功的关键。沉积矿床勘查常必须作出古环境分析,而沉积学的研究对古环境的分析是极有价值的。如铅、锌等层控矿床,可能局限在生物礁母岩中,或藻硫酸盐岩中,铀矿等砂矿床常集中在古河床沉积中。在现代深海沉积的调查和研究中,也重视结合研究锰结核等有远景的矿产。

    沉积学与沉积岩岩石学密切相关,有很多研究方法是相通的。沉积岩岩石学中运用的许多现代的分析和测试方法,如 X射线衍射分析,电子探针分析,扫描电镜和透射电镜观察,阴极发光显微镜观察等都可用于沉积学研究。

    大范围沉积的研究通常采用地震地层学的方法,它对于含煤、含油盆地,海洋沉积和三角洲沉积等研究都起很大的作用。在深海取样和分析研究中,使用回声探测仪、声呐等工具。

    沉积学是地质学的一个分支,也是自然地理学的研究内容,沉积学的研究成果充实和促进了自然地理学的发展。沉积学研究海洋沉积物不但采用海洋学的调查和取样方法,而且直接应用了海洋学关于海洋环境及其物理、化学和生物的特性等的研究成果。

    沉积学还和生物学及古生物学、生态学及古生态学密切相关。因为不仅古代沉积物的沉积环境与古生物的生存环境是一致的,而且某些沉积物本身就含有生物,或其遗体,或基本上就是由生物体组成的。沉积学中关于沉积物在陆地、大气、水体中的搬运、沉积过程的研究必须借助于大气和水文科学的研究成果,所以沉积学与大气科学、水文科学的关系也较密切。

    沉积学借助土壤学的研究了解风化作用某些特征和识别古土壤层;借助空间科学研究了解到火星表层沉积物和地球上的荒漠特征颇相似;凭借着物理学的进展,包括同位素年代测定在内的多种现代测试方法在沉积学中得到广泛应用。沉积学与构造地质学和大地构造学更是密切相关。沉积作用常为构造所控制,反之,沉积学的研究也可证实或解决大地构造问题。

    沉积学在今后的发展、研究中,将与构造地质学和大地构造学研究更多结合。其中需着重研究主动和被动大陆边缘的沉积类型和特征,研究板块缝合带和俯冲带的沉积,研究各分离板块沉积的异同,用沉积学方法研究和证实板块移动的时间和趋向等。在对比沉积学中,将注意定量的和统计的研究古代和现代沉积的差异性。更加注重沉积学的实用意义,尤其在与层控矿床和深海沉积矿床的成因、分布有关的方面将更快的发展。

source: ikepu
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 3-12-2024 12:05 AM , Processed in 0.147308 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表