查看: 1514|回复: 7
|
中六MATH T.
[复制链接]
|
|
这是关于SERIES的,请大家高抬贵手。
如果f(r)=1/[r(r+1)],请简化成f(r+1)-f(r)
之后找出sum of the frist n terms of the series
1/[r(r+1)(r+2)]
如f(r)=r(r+1)(r+2),请简化成f(r)-f(r+1)
这后找出sum of the first n terms of the series
3/[(1^2)(2^2)]+5/[(2^2)(3^2)]+7/[(3^2)(4^2)}+..... |
|
|
|
|
|
|
|
发表于 8-1-2005 10:42 AM
|
显示全部楼层
蝎杰 于 8-1-2005 10:01 AM 说 :
这是关于SERIES的,请大家高抬贵手。
如果f(r)=1/[r(r+1)],请简化成f(r+1)-f(r)
之后找出sum of the frist n terms of the series
1/[r(r+1)(r+2)]
如f(r)=r(r+1)(r+2),请简化成f(r)-f(r+1)
这后找出sum of ...
F(r)=A/(r+1) + B/(R)
find A ANd B 1st
substituting 1 until N into R |
|
|
|
|
|
|
|
发表于 8-1-2005 02:17 PM
|
显示全部楼层
先做第一题:
f(r+1) - f(r) = 1/(r+1) [ 1/(r+2) - 1/r]
= 1/(r+1) { -2 / [r(r+2)] }
= -2 / {r(r+1)(r+2)}
so: 1 / {r(r+1)(r+2)} = -1/2 [ f(r+1) - f(r) ]
sum ( 1 / {r(r+1)(r+2)} , r=1...n ) = -1/2 * sum [ f(r+1) - f(r) , r=1...n ]
= -1/2 ( f(2) - f(1) + f(3) - f(2) + f(4)
- f(3) + ... + f(n+1) - f(n) )
= -1/2 ( f(n+1) - f(1) )
= -1/2 ( 1/[(n+1)(n+2)] - 1/2 )
= 1/4 - 1/[2(n+1)(n+2)] |
|
|
|
|
|
|
|
发表于 8-1-2005 07:19 PM
|
显示全部楼层
第二题直接做就可以了。。
3/[(1^2)(2^2)]+5/[(2^2)(3^2)]+7/[(3^2)(4^2)}+... + (2n+3)/[(n+1)^2 (n+2)^2 ]
= sum { (2r + 3) / [(r+1)^2 (r+2)^2 ] , r=0..n }
= sum { 1/(r+1)^2 - 1/(r+2)^2 , r=0..n }
= 1 / 1^2 - 1 / 2^2 + 1 / 2^2 - 1 / 3^2 + ... + 1 / (n+1)^2 - 1 / (n+2)^2
= 1 - 1 / (n+2)^2
都是一样的技巧 "cancellation of common terms" |
|
|
|
|
|
|
|
楼主 |
发表于 8-1-2005 07:36 PM
|
显示全部楼层
谢谢...那这题VECTOR又如何解呢?
find the vector equivalent to the forces 18N to the west,12N to the north and 20N to the south-east. |
|
|
|
|
|
|
|
发表于 8-1-2005 08:20 PM
|
显示全部楼层
老兄,别把论坛当着是做功课的地方呀!这些问题大可以和同学讨论切磋. |
|
|
|
|
|
|
|
楼主 |
发表于 8-1-2005 08:31 PM
|
显示全部楼层
我有跟同学讨论啊,但是每次讨论到一半时,老师就进教室了,不然就是太多功课要做,没时间于他们讨论....对不起啦,是我的错! |
|
|
|
|
|
|
|
发表于 25-1-2005 02:28 PM
|
显示全部楼层
不好意思,可以岔开话题一下吗?
我想请教一下
举个例子说
6x + 3y + 7= x
这当中到底有几个equation?
是两个还是四个?
我不懂我这样问对吗?
我的意思是
它可以 6x + 3y + 7=x
6x - 3y - 7=x
另外,它可以是 6x + 3y -7 =x
或 6x - 3y +7 =x 吗? |
|
|
|
|
|
|
| |
本周最热论坛帖子
|