佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

楼主: 多普勒效应

数学训练(十一月份)

[复制链接]
430201 该用户已被删除
发表于 23-11-2004 11:50 AM | 显示全部楼层
初中 (A42)
若n^2 + 7可以被8整除,求 n 的形式

(1)若n=2k
則n^2 + 7=4k^2-1+8=(2k+1)(2k-1)+8不可能被8整除
(2)若n=2k+1
則n^2 + 7=(4k^2+4k+1)+7=4k(k+1)+8 可以被8整除
故當n^2 + 7可以被8整除時,則n 的形式為2k+1
回复

使用道具 举报


ADVERTISEMENT

430201 该用户已被删除
发表于 23-11-2004 03:42 PM | 显示全部楼层
初中 (A42)
若n^2 + 7可以被8整除,求 n 的形式

□修正版□
(1)若n=2k
則n^2 + 7=4k^2+7恆為奇數,必不可能被8整除
(2)若n=2k+1
則n^2 + 7=(4k^2+4k+1)+7=4k(k+1)+8 可以被8整除
【∵連續兩個整數的乘積恆為2的倍數,∴4k(k+1)必為8的倍數】
故當n^2 + 7可以被8整除時,則n 的形式為2k+1
回复

使用道具 举报

 楼主| 发表于 24-11-2004 12:01 PM | 显示全部楼层
题目有所调动
星期一和二的题目已移到星期四,五
回复

使用道具 举报

430201 该用户已被删除
发表于 24-11-2004 08:19 PM | 显示全部楼层
(1274,819)=13×7
(1)若乙為13
     1274=13×98,819=13×63
     則甲為93
(2)若乙為91
     1274=91×14,819=91×9
     則甲為19
【把19看錯為9,嚴格來說,應該也算是看錯了十位數字】
回复

使用道具 举报

430201 该用户已被删除
发表于 24-11-2004 10:10 PM | 显示全部楼层
設a=2004^1111(a>1)
∴A=(2004^1111+1)/(2004^2222+1)=(a+1)/(a^2+1)
  B=(2004^2222+1)/(2004^3333+1)=(a^2+1)/(a^3+1)
則A-B的分母=(a^2+1) (a^3+1)>0
   A-B的分子=(a+1)(a^3+1)-(a^2+1) (a^2+1)
              =a×(a-1)^2>0
故(2004^1111+1)/(2004^2222+1)>(2004^2222+1)/(2004^3333+1)
回复

使用道具 举报

发表于 25-11-2004 06:03 PM | 显示全部楼层
多普勒效应 于 22-11-2004 21:21  说 :
摘自我国奥林匹克数学比赛的 Bongsu(初阶)和Muda(中阶)


那...有規定那些數都是正整數嗎?
回复

使用道具 举报

Follow Us
 楼主| 发表于 25-11-2004 09:14 PM | 显示全部楼层
一题有,一题没有。
回复

使用道具 举报

发表于 26-11-2004 12:12 AM | 显示全部楼层
多普勒效应 于 31-10-2004 22:07  说 :
25/11/2004,星期四
高中 (B40)
解联立方程:
X_i 是实数   
X_1 + X_2 + ... + X_1999 = 1999
(X_1)^4 + (X_2)^4 + ... + (X_1999)^4 = (X_1)^3 + (X_2)^3 + ... + (X_1999)^3
(待解)
(答案:)
(解对者:)

只想到一個
x_1=x_2=...=x_1999=1
這題有幾個解阿?
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 26-11-2004 12:17 AM | 显示全部楼层
一个,不过要证明那是唯一的解...
回复

使用道具 举报

 楼主| 发表于 30-11-2004 12:39 PM | 显示全部楼层
430201 于 24-11-2004 08:19 PM  说 :
(1274,819)=13×7
(1)若乙為13
     1274=13×98,819=13×63
     則甲為93
(2)若乙為91
     1274=91×14,819=91×9
     則甲為19
【把19看錯為9,嚴格來說,應該也算是看錯了十位數字】


这题答错了。
回复

使用道具 举报

发表于 1-12-2004 10:32 AM | 显示全部楼层
多普勒效应 于 31-10-2004 22:07  说 :
30/11/2004,星期二
初中 (A44)
证明 (a+ √2)/(b+ √2)是无理数。
(待解)
(答案:)
(解对者:)

a,b是任意實數嗎?
若a=-√2則此式為有理數...
回复

使用道具 举报

430201 该用户已被删除
发表于 2-12-2004 02:00 PM | 显示全部楼层
□請問錯在那兒

(1)原甲=93,乙=13
    小胡:98×13=1274
    小涂:63×13=819
(2)原甲=19,乙=91
    小胡:14×91=1274
    小涂:9×91=819
【把19看錯為9,嚴格來說,應該也算是看錯了十位數字】
回复

使用道具 举报

发表于 2-12-2004 04:14 PM | 显示全部楼层
多普勒效应 于 31-10-2004 22:07  说 :
30/11/2004,星期二
初中 (A44)
a , b 是有理数。
证明 (a+ √2)/(b+ √2)是无理数。
(待解)
(答案:)
(解对者:)


(a+√2)/(b+√2)
=(a+√2)(b-√2)/(b^2-2)
=[ab+2+(b-a)√2]/(b^2-2)

∵(b^2-2),ab,2都是有理數,且有理數+無理數=無理數
∴ab+2+(b-a)√2是無理數(除了a=b,則原式=1)
=>(a+ √2)/(b+ √2)是无理数
證畢

這樣ok???
回复

使用道具 举报

发表于 2-12-2004 04:29 PM | 显示全部楼层
多普勒效应 于 31-10-2004 22:07  说 :
29/11/2004,星期一
初中 (A43)
x+y+z=2000 共有几个正整数解?
(待解)
(答案:)
(解对者:)

x=1時,y+z=1999有1999組解
x=2時,y+z=1998有1998組解
........................
x=1998時,y+z=2有1組解

解數=1+2+3+...+1999
    =1999000組
回复

使用道具 举报

430201 该用户已被删除
发表于 2-12-2004 04:45 PM | 显示全部楼层
初中 (A43)
x+y+z=2000 共有几个正整数解?

1999×1998/2=1997001
回复

使用道具 举报

430201 该用户已被删除
发表于 2-12-2004 04:47 PM | 显示全部楼层
a , b 是有理数。
证明 (a+ √2)/(b+ √2)是无理数。

若(a+√2)/(b+√2)=q(q為有理數)
(1)若a=b,則(a+√2)/(b+√2)=1為有理數
(2)若a≠b,即q≠1
則√2=(a-bq)/q-1)
∵a、b、q為有理數
∴(a-bq)/q-1) 為有理數
與√2為無理數相矛盾
故假設(a+√2)/(b+√2)=q(q為有理數)不成立
即(a+√2)/(b+√2)為無理數
回复

使用道具 举报


ADVERTISEMENT

430201 该用户已被删除
发表于 2-12-2004 08:01 PM | 显示全部楼层
To灰羊先進

個人認為
有理數+無理數=無理數
這個性質有必要先證明
回复

使用道具 举报

430201 该用户已被删除
发表于 2-12-2004 08:04 PM | 显示全部楼层
xTo灰羊先進
您忙中有錯

=1時,y+z=1999有1998組解
x=2時,y+z=1998有1997組解
........................
x=1998時,y+z=2有1組解

解數=1+2+3+...+1998
    =1997001組
回复

使用道具 举报

发表于 3-12-2004 12:57 PM | 显示全部楼层
說的也是....
謝拉430201
繼續破解剩下的題目吧
回复

使用道具 举报

 楼主| 发表于 4-12-2004 03:58 PM | 显示全部楼层
430201 于 24-11-2004 08:19 PM  说 :
(1274,819)=13×7(1)若乙為13
     1274=13×98,819=13×63
     則甲為93
(2)若乙為91
     1274=91×14,819=91×9
     則甲為19
【把19看錯為9,嚴格來說,應該也算是看錯了十位數字】


我的答案是甲=21,乙=49
一个人看成49 x 26 = 1274
另一个看成21 x 39 = 819
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 11-12-2024 08:18 PM , Processed in 0.117935 second(s), 20 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表