佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

123
返回列表 发新帖
楼主: Suaniam

地质学

[复制链接]
 楼主| 发表于 2-12-2006 10:40 PM | 显示全部楼层

地 球 化 学

地球化学是研究地球的化学组成、化学作用和化学演化的科学,它是地质学与化学、物理学相结合而产生和发展起来的边缘学科。自20世纪70年代中期以来,地球化学和地质学、地球物理学已成为固体地球科学的 三大支柱。它的研究范围也从地球扩展到月球和太阳系的其他天体。

    地球化学的理论和方法,对矿产的寻找、评价和开发,农业发展和环境科学等有重要意义。地球科学基础理论的一些重大研究成果,如界限事件、洋底扩张、岩石圈演化等均与地球化学的研究有关。

地球化学发展简史

    从19世纪开始,一些工业国家逐渐开展系统的地质调查和填图、矿产资源的寻找及开发利用促进了地球化学的萌芽。1838年,德国舍恩拜因首先提出“地球化学”这个名词。19世纪中叶以后,分析化学中的重量分析、容量分析逐渐完善;化学元素周期律的发现以及原子结构理论的重大突破,为地球化学的形成奠定了基础。

    1908年,美国克拉克发表《地球化学资料》一书。在这部著作中,克拉克广泛地汇集和计算了地壳及其各部分的化学组成,明确提出地球化学应研究地球的化学作用和化学演化,为地球化学的发展指出了方向。挪威戈尔德施密特在《元素的地球化学分布规则》中指出化学元素在地球上的分布,不仅与其原子的物理化学性质有关,而且还与它在 晶格中的行为特性有关。这使地球化学从主要研究地壳的化学纽成转向探讨化学元素在地球中分布的控制规律。

    1922年费尔斯曼发表《俄罗斯地球化学》一书,系统论述了各地区的地球化学,是第一部区域地球化学基础著作。1924年维尔纳茨基发表了《地球化学概论》一书,首次为地球化学提出了研究原子历史的任务,最先注意到生物对于地壳、生物圈中化学元素迁移、富集和分散的巨大作用。1927年他组织和领导了世界上第一个地球化学研究机构——生物地球化学实验室。

    与此同时,放射性衰变规律的认识、同位素的发现、质谱仪的发明与改进,导致了同位素地球化学,特别是同位素地质年代学的开拓。1907年美国化学家博尔特伍德发表了第一批化学铀-铅法年龄数据。30~40年代铀-钍-铅法、钾-氩法、 钾-锶法、普通铅法、碳-14法等逐步发展完善,使同位素地质年代学初具规模。

    20世纪50年代以后,地球化学除了继续把矿产资源作为重要研究对象以外,还开辟了环境保护、地震预报、海洋开发、农业开发、生命起源、地球深部和球外空间等领域的研究。地球化学分析手段飞速发展,广泛应用超微量、高灵敏度的分析测试技术和仪器,配合电子计算机的使用,不仅可获得大量高精度的分析数据,而且可以直接揭示样品中难于观测的元素及其同位素组成的细微变化和超微结构。

    在这个时期,中国在元素地球化学、同位素地质年代学方面也取得了一批重要成果,如1961年李璞等发表了中国第一批同位素年龄数据;1962年黎彤等发表了中国各种岩浆岩平均化学成分资料;1963年中国科学院完成了中国锂铍铌钽稀土元素地球化学总结,提出了这些矿种的重要矿床类型和分布规律。


地球化学的基本内容


    地球化学主要研究地球和地质体中元素及其同位素的组成,定量地测定元素及其同位素在地球各个部分(如水圈、气圈、生物圈、岩石圈)和地质体中的分布;研究地球表面和内部及某些天体中进行的化学作用,揭示元素及其同位素的迁移、富集和分散规律;研究地球乃至天体的化学演化,即研究地球各个部分,如大气圈、水圈、地壳、地幔、地核中和各种岩类以及各种地质体中化学元素的平衡、旋回,在时间和空间上的变化规律。

    基于研究对象和手段不同,地球化学形成了一些分支学科。

    元素地球化学是从岩石等天然样品中化学元素含量与组合出发,研究各个元素在地球各部分以及宇宙天体中的分布、迁移与演化。在矿产资源研究中,元素地球化学发挥了重要作用,微量元素地球化学研究提供了成岩、成矿作用的地球化学指示剂,并为成岩、成矿作用的定量模型奠定了基础。

    同位素地球化学是根据自然界的核衰变、裂变及其他核反应过程所引起的同位素变异,以及物理、化学和生物过程引起的同位素分馏,研究天体、地球以及各种地质体的形成时间、物质来源与演化历史。同位素地质年代学已建立了一整套同位素年龄测定方法,为地球与天体的演化提供了重要的时间座标。

    比如已经测得太阳系各行星形成的年龄为45~46亿年,太阳系元素的年龄为50~58亿年等等。另外在矿产资源研究中,同位素地球化学可以提供成岩、成矿作用的多方面信息,为探索某些地质体和矿床的形成机制和物质来源提供依据。

    有机地球化学是研究自然界产出的有机质的组成、结构、性质、空间分布、在地球历史中的演化规律以及它们参与地质作用对元素分散富集的影响。生命起源的研究就是有机地球化学的重要内容之一。有机地球化学建立的一套生油指标,为油气的寻找和评价提供了重要手段。

    天体化学是研究元素和核素的起源,元素的宇宙丰度,宇宙物质的元素组成和同位亲组成及其变异,天体形成的物理化学条件及在空间、时间的分布、变化规律。

    环境地球化学是研究人类生存环境的化学组成化学作用、化学演化及其与人类的相互关系,以及人类活动对环境状态的影响及相应对策。环境地球化学揭示了某些疾病的地区性分布特征及其与环境要素间的关系。

    矿床地球化学是研究矿床的化学组成、化学作用和化学演化。着重探讨成矿的时间、物理化学条件、矿质来源和机理等问题。它综合元素地球化学、同位素地球化学、勘查地球化学和实验地球化学等分支学科的研究方法和成果,为矿产的寻找、评价、开发利用服务。

    区域地球化学是研究一定地区某些地质体和圈层的化学组成、化学作用和化学演化,以及元素、同位素的循环、再分配、富集和分散的规律。它为解决区域各类基础地质问题、区域成矿规律和找矿问题以及区域地球化学分区与环境评价等服务。区域地球化学揭示的元素在空间分布的不均匀性,为划分元素地球化学区和成矿远景区提供了依据。

    勘查地球化学是通过对成矿元素和相关元素在不同地质体及区带的含量和分布研究,找出异常地段,以便缩小和确定找矿及勘探对象。除直接为矿产资源服务外,它也是环境评价及国土规划的重要参考。

    地球化学的一些重大成果是各分支学科综合研究的结果。如陨石、月岩与地球形成的同位素年龄的一致,表明太阳系各成员形成独立宇宙体的时间是大致相同的。又如微量元素和同位素研究,导致发现地幔组成的不均一性(垂向的和区域的),提出了双层地幔模型,加深了对地球内部的认识。天体化学、微量元素和同位素地球化学研究,还为新灾变论提供了依据。

    在研究方法上,地球化学综合地质学、化学和物理学等的基本研究方法和技术,形成的一套较为完整和系统的地球化学研究方法。这些方法主要包括:野外地质观察、采样;天然样品的元素、同位素组成分析和存在状态研究;元素迁移、富集地球化学过程的实验模拟等。

    在思维方法上,对大量自然现象的观察资料和岩石、矿物中元素含量分析数据的综合整理,广泛采用归纳法,得出规律,建立各种模型,用文字或图表来表达,称为模式原则。

    随着研究资料的积累和地球化学基础理论的成熟和完善,特别是地球化学过程实验模拟方法的建立,地球化学研究方法由定性转入定量化、参数化,大大加深了对自然作用机制的理解,现代地球化学广泛引入精密科学的理论和思维方法研究自然地质现象,如量子力学、化学热力学、化学动力学核子物理学等,以及电子计算技术的应用使地球化学提高了推断能力和预测水平。

    当前地球化学的研究正在经历三个较大的转变:由大陆转向海洋;由地表、地壳转向地壳深部、地幔;由地球转向球外空间。地球化学的分析测试手段也将更为精确快速,微量、超微量分析测试技术的发展,将可获得超微区范围内和超微量样品中元素、同位素分布和组成资料。低温地球化学、地球化学动力学、超高压地球化学、稀有气体地球化学、比较行星学等很有发展前景。
回复

使用道具 举报


ADVERTISEMENT

 楼主| 发表于 2-12-2006 10:42 PM | 显示全部楼层

岩 石 学

岩石学是研究岩石的成分、结构构造、产状、分布、成因、演化历史和它与成矿作用的关系等的学科。地质学的分支。陨石、月岩等宇宙来源的岩石,也是岩石学的研究对象。岩石学常被分为岩理学和岩类学。前者主要研究岩石的成因,在早期多指与火成岩有关的成因研究;后者主要是鉴定岩石的成分和结构构造,进行岩石特征的描述和分类,又称描述岩石学或岩相学。

    在古代,岩石和矿物统称为“石”。最早有关矿物岩石性状的记载是中国的《山海经》和古希腊泰奥弗拉斯托斯的《石头论》。古希腊哲学家泰勒斯的“一切都来自于水,又复归于水”论断,可以看作关于沉积岩思想的萌芽。

    18世纪后半叶至19世纪初,德国地质学家维尔纳为首的弗莱堡学派倡导水成说,认为所有岩石都是浑沌水的沉淀物。最早沉积花岗岩和片麻岩,其次为片岩、大理岩等,后期为页岩、砂岩、砾岩等。英国自然科学家赫顿于1788年提出了火成说,认为在地下热的影响下,形成的熔融物可经火山活动形成火山岩,或在深部结晶形成花岗质岩石。

    两派各以自己的观点排除对方,把所有的岩石基本看成是同一成因。1830年英国自然科学家莱伊尔提出岩石的成因分类,分为水成岩类、火山岩类、深成岩类和变质岩类,深成岩类包括花岗岩和片麻岩类。从“水火之争”到莱伊尔以多种成因观点代替单一成因观点的岩石分类,是岩石学孕育阶段的主要标志。

    现代岩石学形成于19世纪中期至20世纪50年代。在这一阶段,野外地质调查和区域性地质制图有了较大的发展,使得历史对比法在岩石学的各个领域都得到广泛的应用,确定了各类岩石组合与其形成地质环境的联系,加深了对岩石成因的了解。

    现代的显微岩石学,是英国地质学家索比把偏光显微镜运用于砂岩、石灰岩和粘板岩的观察而开始的。德国齐克尔在1866年《描述岩石学教科书》,对岩石的许多亚类作详细阐述。齐克尔1873年出版的《矿物和岩石在显微镜下特征》和罗森布施的《岩相学主要矿物在显微镜下结构》,奠定了显微岩石学的基础。

    19世纪末至20世纪早期,是岩石化学的形成时期。美国的克拉克和德国的奥桑都是这方面的创始人。克拉克与华盛顿等人合作研究从地表至十英里深处物质平均成分,发表了《火成岩平均成分》、《地壳成分》等重要著作,创造了CIPW岩石化学计算法;挪威岩石学家福格特用矿渣作材料进行高温熔融实验,说明硅酸盐中的共熔关系,确定矿物的结晶顺序并把它运用于天然岩石;美国岩石学家鲍温在1928年发表《火成岩的演化》,提出了钙碱性岩浆中矿物析出的反应系列及其原理,习称“鲍温反应原理”,奠定了岩浆分异作用理论基础。在变质岩岩石学方面,挪威地球化学家戈尔德施密特和芬兰岩石学家埃斯克拉,将物理化学中的相律运用于岩石学,创立了变质相的概念。

    第二次世界大战结束以后,特别是50年代以来,通过国际性多学科地学研究活动的开展,板块学说兴起并不断发展,作为地质学科分支的岩石学进入了新的发展时期。

    X光及电子显微技术的发展,使岩石、矿物内部结构研究进入微区领域;微量分析技术如光谱、X光荧光分析等的发展,使稀土和微量元素定量成为可能,为某些成岩作用的过程的研究提供了定量依据;质谱分析可以测定岩石和矿物中同位素组成,不仅提供了有关成岩作用的时间信息,对示踪岩浆演化、岩浆起源、岩石变质等原岩及其形成过程也都提供重要信息;高温高压实验,能测定的压力达到数百亿帕,约合深度600公里以下,可以模拟上地幔某些岩石的形成。

    上述新技术、新方法的应用为地壳早期岩石,洋底和深部地幔岩石的研究,积累了大量资料,推动了现代岩石学理论的完善化。地震研究使过去的一元或二元原始岩浆论,已转变为受大地构造环境控制而形成的多元岩浆的观点,洋中脊、裂谷带、活动大陆边缘和陆内环境都有不同的岩浆组合。

    关于岩浆演化除了岩浆分异作用、岩浆同化作用之外,岩浆混合的观点,也日益受到重视。板块构造理论对沉积岩岩石学也有显著影响,现代沉积岩石学理论认为:大型沉积盆地和它们的沉积中心与板块运动有关,板块的相互作用和板块构造环境是沉积盆地演化和各种沉积相形成分布的关键。

    用现代沉积作用和水动力学环境的实验模拟资料来解决古沉积环境问题,是沉积岩石学研究的生长点。变质相和变质相系的研究初步奠定了变质作用和大地构造的联系,而地幔与地壳的相互作用而产生的热流是区域变质的根本原因。80年代以来变质作用的温度-压力-时间轨迹的研究揭示了变质作用历史与地壳构造演化之间的关系。

岩石学的分支学科

    火成岩岩石学是研究主要由岩浆作用形成的岩石的成分、结构构造,及其形成条件和演化历史的学科。其运用现代实验技术、物理化学、流体动力学等理论,阐明各类岩浆的演化运移和冷却结晶等过程,依据岩浆岩区域地质分布结合大地构造单元,总结各类岩浆岩自然组合的时空分布规律。

    沉积岩岩石学是研究沉积物和沉积岩的组成、结构、构造和成因的学科。其主要内容包括沉积物和沉积岩物质成分、粒度及其生物化石群落等的研究;判定沉积环境和沉积物的源区,阐明古地理条件和恢复古构造;根据碎屑物和基质的比例,根据矿物颗粒和有机组分的分选性,进行沉积物和沉积岩的分类;根据化学沉积物的特点判定水体化学性质和海水深度等。

    变质岩岩石学是研究地壳内部发生的变质作用,和变质岩的形成特点及其演变历史的学科,天体陨石的冲击变质亦属这一研究范畴。

    在地壳演化过程中,地幔、地壳的相互作用,引起区域热流和构造环境的变化,发生了一系列属于不同变质相、变质相系和不同形变程度的变质岩石。它们是变质作用在自然界的记录,因而也是变质岩岩石学的研究对象。变质岩石学又可分为两个方向:变质地质学和变质实验岩石学。

    工业岩石学是用硅酸盐工艺学的方法来研究和开发与硅酸盐矿物有关的资源,又称工艺岩石学。

    其它的还有宇宙岩石学、化学岩石学、实验岩石学、地幔岩石学、构造岩石学等。

    岩石的形成与形成时的地质环境密不可分,岩石建造是地质环境的一种表现。因此为了阐明地质环境,区域地质学、大地构造学、构造地质学和地层学的研究是必不可少的知识;矿物学和地球化学可以阐明岩石中主要造岩矿物和元素迁移变化的规律,它们与化学热力学和化学反应动力学相结合,可以说明岩石形成过程中可能的物理化学作用过程,以及岩浆发生的可能原岩。

    宇宙岩石学可以看作岩石学与天文学之间的联系环节,而地幔岩石学可以看作岩石学与地球物理学之间的桥梁,这两个分支学科扩大了岩石学研究的时空范围,所研究的深度可达600公里的地幔,时间可以上溯到40亿年左右,其研究成果为研究地球早期演化提供了基础资料。

    作为自然体系的岩石组合,其成因是复杂的,受诸多因素所制约,并且与地壳演化有着密切的联系。有成效的岩石学研究,一方面要摆脱传统观点的束缚,从单纯岩石的描述中解放出来;另一方面也要防止简单化的趋向,把复杂的成因问题纳入简单的成因模式。

    岩石学的研究要掌握更多的岩相学、区域地质学资料,充分搞清各种岩石之间野外关系,加强岩石组合和岩石的物质组分(包括矿物学和地球化学)的研究,从而进一步引出客观存在的形成条件和岩石构造历史,并从物理化学基础理论来阐明其内在联系和发生的根本原因。此外,从全球构造观点,总结分析岩浆建造、变质建造和沉积建造的时空分布规律,这些将是岩石学的基本任务。

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:44 PM | 显示全部楼层

实验岩石学

实验岩石学是在实验室控制的物理化学条件下,研究矿物岩石体系相平衡和动力机理的学科。欧美习惯把矿物和岩石的高温高压实验研究统称实验岩石学,即广义的实验岩石学。

    用实验方法研究矿物和岩石的尝试已有一百多年的历史。英国物理学家霍尔首次做了玄武岩熔化结晶的高温高压实验,因而被称为实验岩石学之父。华盛顿卡内基地球物理实验室于1907年建立,一般把它作为现代实验岩石学发展的起点。20世纪开始了严格受控条件下硅酸盐体系的实验研究,早期以干体系的实验为主。

    美国实验岩石学家鲍温,在硅酸盐干体系实验基础上提出了“矿物反应系列”。第二次世界大战后,高温高压技术的进步使实验岩石学有了较大的发展。1948年美国实验岩石学家塔特尔设计出了冷封高压容器,改进型可用于700~900℃和四亿帕的实验。1952年美国实验岩石家约得研制的内加热高压容器能获得1500℃的高温和十亿帕的高压。这两种流体介质的高压设备成功地用于研究岩浆作用和变质作用,导致了花岗岩深熔理论和玄武岩成因理论的建立。

    二十世纪50年代后,实验岩石学进入到以超高压为特征的发展时期。以1955年首次人工合成出金刚石为契机,各种超高压设备迅速发展起来,出现以固体为压力介质的各种压机,能产生高达三百亿帕的超高压。1976年美国毛河光等研制出的钻石高压腔达到了一千二百亿帕的压力,经改进后又获得了二千八百亿帕的超高压,相当于地核内部的压力。

    实验岩石学不仅研究火山作用、岩浆作用和变质作用等成岩过程,而且还研究地球深部的物态和物相转变,研究矿物岩石在高温高压下的形变、波传播、磁性、电导等物性。实验资料不仅可以核查和补充地质观察,而且可作为推论人们无法观察的深部地质过程的旁证。

    实验岩石学也应用于研究月岩学和陨石学。此外,实验岩石学中的高温高压技术和方法,还用于研制工业和技术的新原料,如人工合成金刚石、半导体和激光晶体、压电和光电晶体,以及耐火、陶瓷等合成材料。

    研究火成岩的成因,比较有成效的是花岗岩成因研究。代表花岗岩的钠长石-正长石-二氧化硅-水体系的实验表明,其液相面随水蒸气压的升高而降低。当压力为五千万帕时熔化温度为770℃,五亿帕时共熔温度降至640℃。

    把钠长石+正长石+二氧化硅,组分大于80%的天然花岗岩的成分点投影到钠长石+正长石-二氧化硅相图上,则绝大多数花岗岩的成分点都集中在共结点附近。这说明花岗岩主要是由熔融体共结形成的,大量天然花岗岩以及沉积岩、变质岩的熔化实验结果也表明,在有水存在及水蒸气压约四亿帕条件下,这些岩石的熔化温度也多在640~700℃之间。

    所有这些实验结果都说明,地壳上部的硅铝质岩石因构造运动下降到20~25公里深度时,会发生部分或全部含水熔化,其生成熔体的成分就相当于花岗岩或花岗闪长岩。因此,大陆中大量的花岗岩是由地壳岩石经深熔和再结晶作用形成的,这个结论已被大多数岩石学家接受。

    基性岩的成因与花岗岩不同。橄榄石-透辉石-二氧化硅体系高压实验表明,橄榄岩或辉橄岩在二十亿帕下发生无水部分熔化,产生的熔体成分相当于二氧化硅略不饱和的玄武岩浆。据此认为,玄武岩浆是超镁铁质上地幔岩石在高压下无水部分熔化形成的。

    当岩石受到变质作用时,它们的矿物组分和结构构造会发生重结晶和改造,其新生成的矿物组分取决于变质的温度、压力等物理化学条件。岩石学家把相近温度压力条件下形成的、代表一定变质岩石的矿物组合划分成组,叫变质相。

    混合岩化和花岗岩化等作用的发生条件和机理,也能借助于实验阐明。当存在粒间溶液时,岩石的液相面位置与有效水的含量有密切关系。当有过剩水时角闪岩、云英闪长岩和花岗岩的初熔曲线彼此分开不远,表明混合岩形成于同大多数地壳岩石相当的深度中。这个混合岩形成的温压条件已是区域变质作用的极限条件。因此区域变质作用的通常产物是粒间花岗岩熔体,而达不到闪长岩的水平。

    人们可根据地表出露的深成岩研究地壳物质的化学和矿物成分,但要了解几十、几百公里以下地球深部的物质就困难了。利用地震测量和高温高压实验等方法,可对地幔物质进行探索。地震波在地球里传播速度的研究表明,地幔是固态物质组成的,且随深度增加物质密度不连续地增大。

    地幔物质究竟以什么物相的形式存在以及它们如何随深度而变化,这长期以来一直是个谜。超高压下的实验研究发现,镁橄榄石在1000℃和一百三十亿帕下相变为变尖晶石,在三百三十亿帕以上又转变为尖晶石和方镁石;斜方辉石在超高压下亦变成密度更大的尖晶石和超石英;在更高的冲击波压力下,硅酸盐矿物趋于转变为密度更大的氧化物。如橄榄石在1500℃和二百六十亿帕下变为钙钛矿、尖晶石和方镁石等。现已查明地幔是由超镁铁质的固相物质组成的,其物相随深度而变化。上地幔物相有辉石、橄榄石、石榴子石等,它们组成的岩石被称作地幔岩。

    实验岩石学有一定的局限性。实验室的条件较之自然过程总是大大简化了,实验时间与漫长地质过程亦无法比拟。不过这些局限性会随着实验技术的完善而逐步缩小。

    现在,实验岩石学正朝着更复杂,因而更接近自然条件的多元体系,和含多种挥发组分的复合体系的实验研究方向发展,朝着探索地球更深部秘密的超高温超高压实验发展。热力学、动力学与实验研究的结合可以互相补充和订正许多数据资料,从而把实验岩石学推向更精确的定量阶段。地质地球化学过程的动力学可能成为这个领域未来探索的主要课题。

 

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:45 PM | 显示全部楼层

工程地质学

工程地质学还要研究工程地质条件的区域分布特征和规律,预测其在自然条件下和工程建设活动中的变化,和可能发生的地质作用,评价其对工程建设的适宜性。

    由于各类工程建筑物的结构和作用,及其所在空间范围内的环境不同,因而可能发生和必须研究的地质作用和工程地质问题往往各有侧重。据此,工程地质学又常分为水利水电工程地质学、道路工程地质学、采矿工程地质学、海港和海洋工程地质学、城市工程地质学等。

    工程地质学的主要研究方法包括地质学方法、实验和测试方法、计算方法和模拟方法。

    地质学方法即自然历史分析法,是运用地质学理论,查明工程地质条件和地质现象的空间分布,分析研究其产生过程和发展趋势,进行定性的判断。它是工程地质研究的基本方法,也是其他研究方法的基础。

    实验和测试方法,包括为测定岩、土体特性参数的实验、对地应力的量级和方向的测试,以及对地质作用随时间延续而发展的监测。

    计算方法,包括应用统计数学方法对测试数据进行统计分析,利用理论或经验公式对已测得的有关数据,进行计算,以定量地评价工程地质问题。

    模拟方法,可分为物理模拟(也称工程地质力学模拟)和数值模拟,它们是在通过地质研究,深入认识地质原型,查明各种边界条件,以及通过实验研究获得有关参数的基础上,结合建筑物的实际作用,正确地抽象出工程地质模型,利用相似材料或各种数学方法,再现和预测地质作用的发生和发展过程。

    电子计算机在工程地质学领域中的应用,不仅使过去难以完成的复杂计算成为可能,而且能够对数据资料自动存储、检索和处理,甚至能够将专家们的智彗存储在计算机中,以备咨询和处理疑难问题。

source: ikepu
回复

使用道具 举报

 楼主| 发表于 2-12-2006 10:47 PM | 显示全部楼层
这些都是地质学最重要的学问。。。在此谨谢一科普网(Ikepu).
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 30-11-2024 07:41 PM , Processed in 0.071571 second(s), 20 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表