佳礼资讯网

 找回密码
 注册

ADVERTISEMENT

查看: 1949|回复: 6

帮忙解答数学试题2

[复制链接]
发表于 30-5-2009 04:23 PM | 显示全部楼层 |阅读模式
这是一道去年STPM的一道数学题。。。我想了很久但还是无法解答。请你们帮帮我。
问题如下:
A 50 litre tank is initially filled with 10 litres pf brine solution containing 20 kg of salt. Starting from time t=0, distilled water is poured into the tank at a constant rate of 4 litres per minute. At the same time, the mixture leaves the tank at a constant rate of k^(1/2) litre per minute, where k^(1/2) >0. The time taken for overflow to occur is 20 minutes.

(a) Let Q be the amount of salt in the tank at time t minutes. Show that the rate of change of Q is given by:


dQ/dt= (-Qk^(1/2))/(10+(4-k^(1/2))t)



* k^(1/2) means square root of k,


Hence, express Q in term of t,

(b) Show that k = 4, and calculate the amount of salt in the tank at the instant outflow occurs.

(c) Sketch the graph of Q against t for 0 < t < 20

谢谢。。。。
回复

使用道具 举报


ADVERTISEMENT

发表于 30-5-2009 06:24 PM | 显示全部楼层
我不懂对不对,不过前面7分好像要explain怎样有那个eqn。
然后integrate就行了。
k=4要用 (10+(4-k^(1/2))t)来做。
overflow occur after 20min。
overflow = tank full = 50
   (10+(4-k^(1/2))t) = 50
when t=20, (10+(4-k^(1/2)20)) = 50
          (4-k^(1/2)20) = 40
             4-k^(1/2) =   2
             -k^(1/2) = -2
              k =   4
接下来是画graph,只要solve了那个eqn就可以画了。
应该是个直线。
加油!
回复

使用道具 举报

 楼主| 发表于 30-5-2009 09:46 PM | 显示全部楼层
谢谢。我觉得proof可以用formula:

Q/t = -Qk^(1/2)

dV/dt = 10liter(in the tank) + Rate of inflow - Rate of outflow
           = 10 + 4t -(k^(1/2))t

但是我无法把两个算式联合。
无论如何,谢谢。

希望大家可以帮帮忙。
回复

使用道具 举报

发表于 31-5-2009 05:47 PM | 显示全部楼层
我去年也栽在这题,研究了是这样show:

下面那part是没问题的吧!
回复

使用道具 举报

 楼主| 发表于 2-6-2009 11:29 AM | 显示全部楼层

回复 4# zfc 的帖子

谢谢。你们非常厉害。解决了我研究很久的问题。因为本学校是第一年开中六,所以老师没经验,全都要自己来。希望将来大家多多帮忙。
回复

使用道具 举报

发表于 2-6-2009 10:13 PM | 显示全部楼层

回复 5# MK705 的帖子

不用客气,加油!
回复

使用道具 举报

Follow Us
 楼主| 发表于 4-6-2009 10:45 PM | 显示全部楼层
我已经得到答案了,答案如下:


>A 50 litre tank is initially filled with 10 litres pf brine solution
>containing 20 kg of salt. Starting from time t=0, distilled water is
>poured into the tank at a constant rate of 4 litres per minute. At
>the same time, the mixture leaves the tank at a constant rate of k^
>(1/2) litre per minute, where k^(1/2) >0. The time taken for
>overflow to occur is 20 minutes.
>
>(a) Let Q be the amount of salt in the tank at time t minutes.

I will ignore their unhelpful suggestions and follow the usual way of
doing these problems.

At time t mins after the start the volume of solution in the tank is

10 + (4 - sqrt(k)).t

when t=20 this volume has increased to 50 litres.

So 10 + 20(4-sqrt(k)) = 50

20(4-sqrt(k)) = 40

(4-sqrt(k)) = 2 and so sqrt(k) = 2 <----

Volume of solution in the tank at time t = 10+2t litres

And 2 litres per minute of mixture leaves the tank.

If Q = amount of salt at time t (and assuming perfect mixing) the
mass of salt leaving per minute = Q.2/(10+2t)

dQ/dt = -Q/(5+t)

dQ -dt
---- = ----- and integrating both sides
Q 5+t

ln(Q) = -ln(t+5) + ln(A) where A = constant

ln(Q) = ln[A/(t+5)]

Q = A/(t+5)

at t=0 Q=20 20 = A/5 so A = 100

Therefore Q = 100/(t+5) <--------


>Hence, express Q in term of t, (see above) <-------
>
>(b) Show that k = 4, and calculate the amount of salt in the tank at
>the instant outflow occurs.

We had sqrt(k) = 2 so k = 4 <--------

Also at t=20 Q = 4 <------ (overflow starts)

>
>(c) Sketch the graph of Q against t for 0 < t < 20

Starts at (0,20) and descends in a smooth curve to (20,4)

对不起没有翻译,希望大家看得明白。 破案!!!哈哈哈!!!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

 

所属分类: 欢乐校园


ADVERTISEMENT



ADVERTISEMENT



ADVERTISEMENT

ADVERTISEMENT


版权所有 © 1996-2023 Cari Internet Sdn Bhd (483575-W)|IPSERVERONE 提供云主机|广告刊登|关于我们|私隐权|免控|投诉|联络|脸书|佳礼资讯网

GMT+8, 29-11-2024 05:31 PM , Processed in 0.127125 second(s), 24 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表